skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enhanced photoreduction of water catalyzed by a cucurbit[8]uril-secured platinum dimer
A cucurbit[8]uril (CB[8])-secured platinum terpyridyl chloride dimer was used as a photosensitizer and hydrogen-evolving catalyst for the photoreduction of water. Volumes of produced hydrogen were up to 25 and 6 times larger than those obtained with the corresponding free and cucurbit[7]uril-bound platinum monomer, respectively, at equal Pt concentration. The thermodynamics of the proton-coupled electron transfer from the Pt( ii )–Pt( ii ) dimer to the corresponding Pt( ii )–Pt( iii )–H hydride key intermediate, as quantified by density functional theory, suggest that CB[8] secures the Pt( ii )–Pt( ii ) dimer in a particularly reactive conformation that promotes hydrogen formation.  more » « less
Award ID(s):
1905238 1507321
PAR ID:
10355231
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Science
Volume:
12
Issue:
46
ISSN:
2041-6520
Page Range / eLocation ID:
15347 to 15352
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Platinum terpyridyl complexes, stacked on top of one another and secured as dimers with cucurbit[8]uril (CB[8]) in aqueous medium, were functionalized quantitatively and in situ with a pair of pentapeptides Phe-(Gly) 3 -Cys by grafting their cysteine residues to the Pt centers. The resulting CB[8]·(Pt·peptide) 2 assemblies were used to target secondary hosts CB[7] and CB[8] via their pair of phenylalanine residues, again in situ . A series of well-defined architectures, including a supramolecular “pendant necklace” with hybrid head-to-head and head-to-tail arrangements inside CB[8], were obtained during the self-sorting process after combining only 3 or 4 simple building units. 
    more » « less
  2. Abstract The recognition and separation of anions attracts attention from chemists, materials scientists, and engineers. Employing exo‐binding of artificial macrocycles to selectively recognize anions remains a challenge in supramolecular chemistry. We report the instantaneous co‐crystallization and concomitant co‐precipitation between [PtCl6]2−dianions and cucurbit[6]uril, which relies on the selective recognition of these dianions through noncovalent bonding interactions on the outer surface of cucurbit[6]uril. The selective [PtCl6]2−dianion recognition is driven by weak [Pt−Cl⋅⋅⋅H−C] hydrogen bonding and [Pt−Cl⋅⋅⋅C=O] ion–dipole interactions. The synthetic protocol is highly selective. Recognition is not observed in combinations between cucurbit[6]uril and six other Pt‐ and Pd‐ or Rh‐based chloride anions. We also demonstrated that cucurbit[6]uril is able to separate selectively [PtCl6]2−dianions from a mixture of [PtCl6]2−, [PdCl4]2−, and [RhCl6]3−anions. This protocol could be exploited to recover platinum from spent vehicular three‐way catalytic converters and other platinum‐bearing metal waste. 
    more » « less
  3. The self-sorting process of homobimetallic Pt(ii) terpyridyl acetylide dimers secured by a pair of Cucurbit[8]uril macrocycles with recognition motif mismatch can be quantified using a model comprising two coupled harmonic oscillators. 
    more » « less
  4. null (Ed.)
    Naphthalene diimides (NDIs) are shown to arrange spontaneously co-facially with cucurbit[8]uril (CB[8]) in an aqueous environment through purely non-covalent interactions. The resultant 2 : 2 supramolecular complex of NDI and CB[8] is highly fluorescent (>30 times more than the constituent NDIs) due to the formation of NDI–NDI excimers within the supramolecular complex. 
    more » « less
  5. Relative binding affinities of a series of nine rigid hydrocarbons towards the cavity formed by a portion of the inner wall of cucurbit[8]uril (CB[8]) and a positive auxiliary guest were determined by competitive 19 F NMR titrations in deuterium oxide. The corresponding free binding energies were corrected by the hydrocarbon computed solvation energies to obtain their free energies of transfer from the gas phase to the CB[8]/auxiliary guest cavity. These energies correlate linearly with the hydrocarbon static polarizabilities, thereby suggesting that the selectivity is driven, perhaps exclusively, by dispersive interactions between the hydrocarbons and the tailor-made cavity, regardless of the degree of unsaturation of the guests. The free energies of transfer also correlate linearly with the energy released upon introduction of the hydrocarbon into a pre-formed cavity extruded from a solvent (benzene) selected to mimic the polarity and polarizability of the CB[8]/auxiliary probe cavity – and this, with a unity slope. Among other features, this empirical model also accurately predicts the relative binding affinities of various rigid hydrocarbons to CB[6] and CB[7], as well as noble gases to CB[5], when the macrocycles are mimicked with pre-formed cavities in perfluorohexane or perfluorohexane/benzene mixtures, both being notoriously non-polar and non-polarizable environments. 
    more » « less