skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Investigating the influence of thermal environment on infection dynamics of Bsal in Plethodontid salamanders
The potential emergence of Batrachochytrium salamandrivorans (Bsal) in North America threatens salamander diversity and ecosystem functioning, thus an understanding of mechanisms influencing host survival during infection is key to predict future impacts. Previous studies indicate that temperature plays a role in regulating infection dynamics, in that access to a thermal gradient provides the means to prevent infections. Phenotypic flexibility is a likely mechanism, as temperature can enhance (or suppress) host functional capacity in both lunged and lungless salamanders. However, we know very little about how hosts are using thermal environments to achieve effective immune gene expression during Bsal infection. Through a series of experiments, we aim to 1) reveal if interspecific differences in disease susceptibility and functional responses are exacerbated by thermal environments, 2) determine if hosts can minimize the metabolic costs of infections by selecting optimal environments, and 3) project susceptibility risk across the landscape using information about species’ thermal preferences. We discuss our plans to evaluate immune gene expression, metabolic rates and thermoregulation relating to infection with Bsal and access to different thermal environments in plethodontid salamanders from Florida. Additionally, to develop models to predict infection susceptibility, we are seeking collaborations in compiling data on thermal preferences and thermal limits across plethodontid salamander species.  more » « less
Award ID(s):
2109663
PAR ID:
10398988
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Global Amphibian and Reptile Disease Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Xuan Liu (Ed.)
    Aim: Amphibian populations are threatened globally by anthropogenic change and Batrachochytrium dendrobatidis (Bd), a fungal pathogen causing chytridiomycosis disease to varying degrees of severity. A closely related new fungal pathogen, Batrachochytrium salamandrivorans (Bsal), has recently left its supposed native range in Asia and decimated some salamander populations in Europe. Despite being noticed initially for causing chytridiomycosis-related population declines in salamanders, Bsal can also infect anurans and cause non-lethal chytridiomycosis or asymptomatic infections in salamanders. Bsal has not yet been detected in the United States, but given the United States has the highest salamander biodiversity on Earth, predictive assessments of salamander risk to Bsal infection will enable proactive allocation of research and conservation efforts into disease prevention and mitigation. Location: The United States, Europe and Asia. Methods: We first predicted the environmental suitability for the Bsal pathogen in the United States through an ecological niche model based on the pathogen's known native range in Asia, validated on the observed invasive range in Europe using bioclimatic, land cover, elevation, soil characteristics and human modification variables. Second, we predicted the susceptibility of salamander species to Bsal infection using a machine-learning model that correlated life history traits with published data on confirmed species infections. Finally, we mapped the geographic ranges of the subset of species that were predicted to be susceptible to Bsal infection. Results: In the United States, the overlap of environmental suitability and susceptible salamander species was greatest in the Pacific Northwest, near the Gulf of Mexico, and along the Atlantic coast, and in inland states east of the Plains region. Main Conclusions: The overlap of these metrics identify salamander populations that may be at risk of developing Bsal infection and suggests priorities for pre-emptive research and conservation measures to protect at-risk salamander species from an additional pathogenic threat. 
    more » « less
  2. Reguera, Gemma (Ed.)
    ABSTRACT Mucosal defenses are crucial in animals for protection against pathogens and predators. Host defense peptides (antimicrobial peptides, AMPs) as well as skin-associated microbes are key components of mucosal immunity, particularly in amphibians. We integrate microbiology, molecular biology, network-thinking, and proteomics to understand how host and microbially derived products on amphibian skin (referred to as the mucosome) serve as pathogen defenses. We studied defense mechanisms against chytrid pathogens, Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal), in four salamander species with different Batrachochytrium susceptibilities. Bd infection was quantified using qPCR, mucosome function (i.e., ability to kill Bd or Bsal zoospores in vitro ), skin bacterial communities using 16S rRNA gene amplicon sequencing, and the role of Bd-inhibitory bacteria in microbial networks across all species. We explored the presence of candidate-AMPs in eastern newts and red-backed salamanders. Eastern newts had the highest Bd prevalence and mucosome function, while red-back salamanders had the lowest Bd prevalence and mucosome function, and two-lined salamanders and seal salamanders were intermediates. Salamanders with highest Bd infection intensity showed greater mucosome function. Bd infection prevalence significantly decreased as putative Bd-inhibitory bacterial richness and relative abundance increased on hosts. In co-occurrence networks, some putative Bd-inhibitory bacteria were found as hub-taxa, with red-backs having the highest proportion of protective hubs and positive associations related to putative Bd-inhibitory hub bacteria. We found more AMP candidates on salamanders with lower Bd susceptibility. These findings suggest that salamanders possess distinct innate mechanisms that affect chytrid fungi. IMPORTANCE How host mucosal defenses interact, and influence disease outcome is critical in understanding host defenses against pathogens. A more detailed understanding is needed of the interactions between the host and the functioning of its mucosal defenses in pathogen defense. This study investigates the variability of chytrid susceptibility in salamanders and the innate defenses each species possesses to mediate pathogens, thus advancing the knowledge toward a deeper understanding of the microbial ecology of skin-associated bacteria and contributing to the development of bioaugmentation strategies to mediate pathogen infection and disease. This study improves the understanding of complex immune defense mechanisms in salamanders and highlights the potential role of the mucosome to reduce the probability of Bd disease development and that putative protective bacteria may reduce likelihood of Bd infecting skin. 
    more » « less
  3. Abstract Batrachochytrium salamandrivorans ( Bsal ) is a fungal pathogen of amphibians that is emerging in Europe and could be introduced to North America through international trade or other pathways. To evaluate the risk of Bsal invasion to amphibian biodiversity, we performed dose-response experiments on 35 North American species from 10 families, including larvae from five species. We discovered that Bsal caused infection in 74% and mortality in 35% of species tested. Both salamanders and frogs became infected and developed Bsal chytridiomycosis. Based on our host susceptibility results, environmental suitability conditions for Bsal , and geographic ranges of salamanders in the United States, predicted biodiversity loss is expected to be greatest in the Appalachian Region and along the West Coast. Indices of infection and disease susceptibility suggest that North American amphibian species span a spectrum of vulnerability to Bsal chytridiomycosis and most amphibian communities will include an assemblage of resistant, carrier, and amplification species. Predicted salamander losses could exceed 80 species in the United States and 140 species in North America. 
    more » « less
  4. Abstract Understanding the responses of naïve communities to the invasion of multihost pathogens requires accurate estimates of susceptibility across taxa. In the Americas, the likely emergence of a second amphibian pathogenic fungus (Batrachochytrium salamandrivorans, Bsal) calls for new ways of prioritizing disease mitigation among species due to the high diversity of naïve hosts with priorB. dendrobatidis(Bd) infections. Here, we applied the concept of pathogenic potential to quantify the virulence of chytrid fungi on naïve amphibians and evaluate species for conservation efforts in the event of an outbreak. The benefit of this measure is that it combines and summarizes the variation in disease effects into a single numerical index, allowing for comparisons across species, populations or groups of individuals that may inherently exhibit differences in susceptibility. As a proof of concept, we obtained standardized responses of disease severity by performing experimental infections withBsalon five plethodontid salamanders from southeastern United States. Four out of five species carried natural infections ofBdat the start of the experiments. We showed thatBsalexhibited its highest value of pathogenic potential in a species that is already declining (Desmognathus auriculatus). We find that this index provides additional information beyond the standard measures of disease prevalence, intensity, and mortality, because it leveraged these disease parameters within each categorical group. Scientists and practitioners could use this measure to justify research, funding, trade, or conservation measures. 
    more » « less
  5. The emerging fungal pathogen, Batrachochytrium dendrobatidis ( Bd ), which can cause a fatal disease called chytridiomycosis, is implicated in the collapse of hundreds of host amphibian species. We describe chytridiomycosis dynamics in two co-occurring terrestrial salamander species, the Santa Lucia Mountains slender salamander, Batrachoseps luciae , and the arboreal salamander, Aneides lugubris . We (1) conduct a retrospective Bd -infection survey of specimens collected over the last century, (2) estimate present-day Bd infections in wild populations, (3) use generalized linear models (GLM) to identify biotic and abiotic correlates of infection risk, (4) investigate susceptibility of hosts exposed to Bd in laboratory trials, and (5) examine the ability of host skin bacteria to inhibit Bd in culture. Our historical survey of 2,866 specimens revealed that for most of the early 20th century (~1920–1969), Bd was not detected in either species. By the 1990s the proportion of infected specimens was 29 and 17% ( B. luciae and A. lugubris , respectively), and in the 2010s it was 10 and 17%. This was similar to the number of infected samples from contemporary populations (2014–2015) at 10 and 18%. We found that both hosts experience signs of chytridiomycosis and suffered high Bd -caused mortality (88 and 71% for B. luciae and A. lugubris , respectively). Our GLM revealed that Bd -infection probability was positively correlated with intraspecific group size and proximity to heterospecifics but not to abiotic factors such as precipitation, minimum temperature, maximum temperature, mean temperature, and elevation, or to the size of the hosts. Finally, we found that both host species contain symbiotic skin-bacteria that inhibit growth of Bd in laboratory trials. Our results provide new evidence consistent with other studies showing a relatively recent Bd invasion of amphibian host populations in western North America and suggest that the spread of the pathogen may be enabled both through conspecific and heterospecific host interactions. Our results suggest that wildlife disease studies should assess host-pathogen dynamics that consider the interactions and effects of multiple hosts, as well as the historical context of pathogen invasion, establishment, and epizootic to enzootic transitions to better understand and predict disease dynamics. 
    more » « less