skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: First predicted cosmic ray spectra, primary-to-secondary ratios, and ionization rates from MHD galaxy formation simulations
Abstract We present the first simulations evolving resolved spectra of cosmic rays (CRs) from MeV-TeV energies (including electrons, positrons, (anti)protons, and heavier nuclei), in live kinetic-MHD galaxy simulations with star formation and feedback. We utilize new numerical methods including terms often neglected in historical models, comparing Milky Way analogues with phenomenological scattering coefficients ν to Solar-neighborhood (LISM) observations (spectra, B/C, e+/e−, $$\bar{p}/p$$, 10Be/9Be, ionization, γ-rays). We show it is possible to reproduce observations with simple single-power-law injection and scattering coefficients (scaling with rigidity R), similar to previous (non-dynamical) calculations. We also find: (1) The circum-galactic medium in realistic galaxies necessarily imposes a ∼10 kpc CR scattering halo, influencing the required ν(R). (2) Increasing the normalization of ν(R) re-normalizes CR secondary spectra but also changes primary spectral slopes, owing to source distribution and loss effects. (3) Diffusive/turbulent reacceleration is unimportant and generally sub-dominant to gyroresonant/streaming losses, which are sub-dominant to adiabatic/convective terms dominated by ∼0.1 − 1 kpc turbulent/fountain motions. (4) CR spectra vary considerably across galaxies; certain features can arise from local structure rather than transport physics. (5) Systematic variation in CR ionization rates between LISM and molecular clouds (or Galactic position) arises naturally without invoking alternative sources. (6) Abundances of CNO nuclei require most CR acceleration occurs around when reverse shocks form in SNe, not in OB wind bubbles or later Sedov-Taylor stages of SNe remnants.  more » « less
Award ID(s):
2108318 1911233 1455342 2108314 2108230 1715216 2009234 2107872
PAR ID:
10355354
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
ISSN:
0035-8711
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Many recent numerical studies have argued that cosmic rays (CRs) from supernovae (SNe) or active galactic nuclei (AGNs) could play a crucial role in galaxy formation, in particular by establishing a CR-pressure-dominated circumgalactic medium (CGM). But explicit CR-magnetohydrodynamics (CR-MHD) remains computationally expensive, and it is not clear whether those results can be applied to simulations that do not explicitly treat magnetic fields or resolved interstellar medium phase structure. We therefore present an intentionally extremely simplified ‘sub-grid’ model for CRs, which attempts to capture the key qualitative behaviors of greatest interest for those interested in simulations or semi-analytical models including some approximate CR effects on galactic (≳ kpc) scales, while imposing negligible computational overhead. The model is numerically akin to some recently developed sub-grid models for radiative feedback, and allows for a simple constant parametrization of the CR diffusivity and/or streaming speed; it allows for an arbitrary distribution of sources (proportional to black hole accretion rates or star–particle SNe rates or gas/galaxy star formation rates), and interpolates between the limits where CRs escape the galaxies with negligible losses and those where CRs lose most of their energy catastrophically before escape (relevant in e.g. starburst galaxies). The numerical equations are solved trivially alongside gravity in most codes. We compare this to explicit CR-MHD simulations and discuss where the (many) sub-grid approximations break down, and what drives the major sources of uncertainty. 
    more » « less
  2. null (Ed.)
    ABSTRACT The microphysics of ∼ GeV cosmic ray (CR) transport on galactic scales remain deeply uncertain, with almost all studies adopting simple prescriptions (e.g. constant diffusivity). We explore different physically motivated, anisotropic, dynamical CR transport scalings in high-resolution cosmological Feedback In Realistic Environment (FIRE) simulations of dwarf and ∼L* galaxies where scattering rates vary with local plasma properties motivated by extrinsic turbulence (ET) or self-confinement (SC) scenarios, with varying assumptions about e.g. turbulent power spectra on un-resolved scales, Alfvén-wave damping, etc. We self-consistently predict observables including γ-rays (Lγ), grammage, residence times, and CR energy densities to constrain the models. We demonstrate many non-linear dynamical effects (not captured in simpler models) tend to enhance confinement. For example, in multiphase media, even allowing arbitrary fast transport in neutral gas does not substantially reduce CR residence times (or Lγ), as transport is rate-limited by the ionized WIM and ‘inner CGM’ gaseous halo (104–106 K gas within $$\lesssim 10\!-\!30\,$$ kpc), and Lγ can be dominated by trapping in small ‘patches’. Most physical ET models contribute negligible scattering of ∼1–10 GeV CRs, but it is crucial to account for anisotropy and damping (especially of fast modes) or else scattering rates would violate observations. We show that the most widely assumed scalings for SC models produce excessive confinement by factors ≳100 in the warm ionized medium (WIM) and inner CGM, where turbulent and Landau damping dominate. This suggests either a breakdown of quasi-linear theory used to derive the CR transport parameters in SC, or that other novel damping mechanisms dominate in intermediate-density ionized gas. 
    more » « less
  3. Abstract We present the implementation and the first results of cosmic ray (CR) feedback in the Feedback In Realistic Environments (FIRE) simulations. We investigate CR feedback in non-cosmological simulations of dwarf, sub-L⋆ starburst, and L⋆ galaxies with different propagation models, including advection, isotropic and anisotropic diffusion, and streaming along field lines with different transport coefficients. We simulate CR diffusion and streaming simultaneously in galaxies with high resolution, using a two moment method. We forward-model and compare to observations of γ-ray emission from nearby and starburst galaxies. We reproduce the γ-ray observations of dwarf and L⋆ galaxies with constant isotropic diffusion coefficient κ ∼ 3 × 1029 cm2 s−1. Advection-only and streaming-only models produce order-of-magnitude too large γ-ray luminosities in dwarf and L⋆ galaxies. We show that in models that match the γ-ray observations, most CRs escape low-gas-density galaxies (e.g. dwarfs) before significant collisional losses, while starburst galaxies are CR proton calorimeters. While adiabatic losses can be significant, they occur only after CRs escape galaxies, so they are only of secondary importance for γ-ray emissivities. Models where CRs are “trapped” in the star-forming disk have lower star formation efficiency, but these models are ruled out by γ-ray observations. For models with constant κ that match the γ-ray observations, CRs form extended halos with scale heights of several kpc to several tens of kpc. 
    more » « less
  4. Abstract Galactic cosmic rays (CRs) are accelerated at the forward shocks of supernova remnants (SNRs) via diffusive shock acceleration (DSA), an efficient acceleration mechanism that predicts power-law energy distributions of CRs. However, observations of nonthermal SNR emission imply CR energy distributions that are generally steeper than E −2 , the standard DSA prediction. Recent results from kinetic hybrid simulations suggest that such steep spectra may arise from the drift of magnetic structures with respect to the thermal plasma downstream of the shock. Using a semi-analytic model of nonlinear DSA, we investigate the implications that these results have on the phenomenology of a wide range of SNRs. By accounting for the motion of magnetic structures in the downstream, we produce CR energy distributions that are substantially steeper than E −2 and consistent with observations. Our formalism reproduces both modestly steep spectra of Galactic SNRs (∝ E −2.2 ) and the very steep spectra of young radio supernovae (∝ E −3 ). 
    more » « less
  5. Abstract We analyze the cool gas in and around 14 nearby galaxies (at z < 0.1) mapped with the Sloan Digital Sky Survey IV MaNGA survey by measuring absorption lines produced by gas in spectra of background quasars/active galactic nuclei at impact parameters of 0–25 effective radii from the galactic centers. Using Hubble Space Telescope/Cosmic Origins Spectrograph, we detect absorption at the galactic redshift and measure or constrain column densities of neutral (H i , N i , O i , and Ar i ), low-ionization (Si ii , S ii , C ii , N ii , and Fe ii ), and high-ionization (Si iii , Fe iii , N v , and O vi ) species for 11 galaxies. We derive the ionization parameter and ionization-corrected metallicity using cloudy photoionization models. The H i column density ranges from ∼10 13 to ∼10 20 cm −2 and decreases with impact parameter for r ≳ R e . Galaxies with higher stellar mass have weaker H i absorption. Comparing absorption velocities with MaNGA radial velocity maps of ionized gas line emissions in galactic disks, we find that the neutral gas seen in absorption corotates with the disk out to ∼10 R e . Sight lines with lower elevation angles show lower metallicities, consistent with the metallicity gradient in the disk derived from MaNGA maps. Higher-elevation angle sight lines show higher ionization, lower H i column density, supersolar metallicity, and velocities consistent with the direction of galactic outflow. Our data offer the first detailed comparisons of circumgalactic medium (CGM) properties (kinematics and metallicity) with extrapolations of detailed galaxy maps from integral field spectroscopy; similar studies for larger samples are needed to more fully understand how galaxies interact with their CGM. 
    more » « less