Abstract As the role of the Greenland Ice Sheet in the Arctic mercury (Hg) budget draws scrutiny, it is crucial to understand mercury cycling in glacial fjords, which control exchanges with the ocean. We present full water column measurements of total mercury (THg) and methylmercury (MeHg) in Sermilik Fjord, a large fjord in southeast Greenland fed by multiple marine-terminating glaciers, whose circulation and water mass transformations have been extensively studied. We show that THg (0.23-1.1 pM) and MeHg (0.02-0.17 pM) concentrations are similar to those in nearby coastal waters, while the exported glacially-modified waters are relatively depleted in inorganic mercury (Hg(II)), suggesting that inflowing ocean waters from the continental shelf are the dominant source of mercury species to the fjord. We propose that sediments initially suspended in glacier meltwaters scavenge particle-reactive Hg(II) and are subsequently buried, making the fjord a net sink of oceanic mercury.
more »
« less
Large subglacial source of mercury from the southwestern margin of the Greenland Ice Sheet
Abstract The Greenland Ice Sheet is currently not accounted for in Arctic mercury budgets, despite large and increasing annual runoff to the ocean and the socio-economic concerns of high mercury levels in Arctic organisms. Here we present concentrations of mercury in meltwaters from three glacial catchments on the southwestern margin of the Greenland Ice Sheet and evaluate the export of mercury to downstream fjords based on samples collected during summer ablation seasons. We show that concentrations of dissolved mercury are among the highest recorded in natural waters and mercury yields from these glacial catchments (521–3,300 mmol km −2 year −1 ) are two orders of magnitude higher than from Arctic rivers (4–20 mmol km −2 year −1 ). Fluxes of dissolved mercury from the southwestern region of Greenland are estimated to be globally significant (15.4–212 kmol year −1 ), accounting for about 10% of the estimated global riverine flux, and include export of bioaccumulating methylmercury (0.31–1.97 kmol year −1 ). High dissolved mercury concentrations (~20 pM inorganic mercury and ~2 pM methylmercury) were found to persist across salinity gradients of fjords. Mean particulate mercury concentrations were among the highest recorded in the literature (~51,000 pM), and dissolved mercury concentrations in runoff exceed reported surface snow and ice values. These results suggest a geological source of mercury at the ice sheet bed. The high concentrations of mercury and its large export to the downstream fjords have important implications for Arctic ecosystems, highlighting an urgent need to better understand mercury dynamics in ice sheet runoff under global warming.
more »
« less
- Award ID(s):
- 2023031
- PAR ID:
- 10355361
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Nature Geoscience
- Volume:
- 14
- Issue:
- 7
- ISSN:
- 1752-0894
- Page Range / eLocation ID:
- 496 to 502
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Climate change is increasing sulfate export and changing wetland extent in mountain regions. These changes may increase microbially mediated production of the neurotoxic substance methylmercury due to enhanced sulfate metabolism in mountain environments. Here, we assess methylmercury concentrations and formation rates across high-elevation wetlands in the Colorado Rocky Mountains. We also investigate sulfate controls on methylmercury production within subalpine peatlands by amending soils with sulfate to mimic increased stream export of sulfate from the alpine zone and measuring methylmercury formation rates for different sulfate treatments. We found that subalpine peatlands have statistically significant higher methylmercury concentrations and formation rates compared to alpine, mineral-soil wetlands. Methylmercury production in subalpine peatlands also increased significantly (p < 0.05) following sulfate additions; the highest rates occurred in sediments with intermediate extractable sulfate concentrations (~0.60–1.4 mg sulfate g-1 dry soil). Our study is the first to identify soil sulfate-related thresholds for methylmercury production and sulfate-limitation of methylmercury production in subalpine peatlands. These findings highlight important linkages between climate-driven mineral weathering and mercury cycling in mountain regions globally.more » « less
-
Abstract Freshwater from the Greenland Ice Sheet is routed to the ocean through narrow fjords along the coastline where it impacts ecosystems both within the fjord and on the continental shelf, regional circulation, and potentially the global overturning circulation. However, the timing of freshwater export is sensitive to the residence time of waters within glacial fjords. Here, we present evidence of seasonal freshwater storage in a tidewater glacial fjord using hydrographic and velocity data collected over 10 days during the summers of 2012 and 2013 in Saqqarleq (SQ), a midsize fjord in west Greenland. The data revealed a rapid freshening trend of −0.05 ± 0.01 and −0.04 ± 0.01 g kg −1 day −1 in 2012 and 2013, respectively, within the intermediate layer of the fjord (15–100 m) less than 2.5 km from the glacier terminus. The freshening trend is driven, in part, by the downward mixing of outflowing glacially modified water near the surface and increasingly stratifies the fjord from the surface downward over the summer melt season. We construct a box model that recreates the first-order dynamics of the fjord and describes freshwater storage as a balance between friction and density-driven exchange outside the fjord. The model can be used to diagnose the time scale for this balance to be reached, and for SQ we find a month lag between subglacial meltwater discharge and net freshwater export. These results indicate a fjord-induced delay in freshwater export to the ocean that should be represented in large-scale models seeking to understand the impact of Greenland freshwater on the regional climate system.more » « less
-
Abstract. We used mapping of bedrock lithology, bedrock fractures, and lake density in Inglefield Land, northwestern Greenland, combined with cosmogenic nuclide (10Be and 26Al) measurements in bedrock surfaces, to investigate glacial erosion and the ice sheet history of the northwestern Greenland Ice Sheet. The pattern of eroded versus weathered bedrock surfaces and other glacial erosion indicators reveal temporally and spatially varying erosion under cold- and warm-based ice. All of the bedrock surfaces that we measured in Inglefield Land contain cosmogenic nuclide inheritance with apparent 10Be ages ranging from 24.9 ± 0.5 to 215.8 ± 7.4 ka. The 26Al/10Be ratios require minimum combined surface burial and exposure histories of ∼ 150 to 2000 kyr. Because our sample sites span a relatively small area that experienced a similar ice sheet history, we attribute differences in nuclide concentrations and ratios to varying erosion during the Quaternary. We show that an ice sheet history with ∼ 900 kyr of exposure and ∼ 1800 kyr of ice cover throughout the Quaternary is consistent with the measured nuclide concentrations in most samples when sample-specific subaerial erosion rates are between 0 and 2 × 10−2 mm yr−1 and subglacial erosion rates are between 0 and 2 × 10−3 mm yr−1. These erosion rates help to characterize Arctic landscape evolution in crystalline bedrock terrains in areas away from focused ice flow.more » « less
-
Abstract Catchments with minimal disturbance usually have low dissolved inorganic nitrogen (DIN) export, but disturbances and anthropogenic inputs result in elevated DIN concentration and export and eutrophication of downstream ecosystems. We studied streams in the southern Appalachian Mountains, USA, an area dominated by hardwood deciduous forest but with areas of valley agriculture and increasing residential development. We collected weekly grab samples and storm samples from nine small catchments and three river sites. Most discharge occurred at baseflow, with baseflow indices ranging from 69% to 95%. We identified three seasonal patterns of baseflow DIN concentration. Streams in mostly forested catchments had low DIN with bimodal peaks, and summer peaks were greater than winter peaks. Streams with more agriculture and development also had bimodal peaks; however, winter peaks were the highest. In streams draining catchments with more residential development, DIN concentration had a single peak, greatest in winter and lowest in summer. Three methods for estimating DIN export produced consistent results. Annual DIN export ranged from less than 200 g ha−1 year−1for the less disturbed catchments to over 2,000 g ha−1 year−1in the catchments with the least forest area. Land cover was a strong predictor of DIN concentration but less significant for predicting DIN export. The two forested reference catchments appeared supply limited, the most residential catchment appeared transport limited, and export for the other catchments was significantly related to discharge. In all streams, baseflow DIN export exceeded stormflow export. Morphological and climatological variation among watersheds created complexities unexplainable by land cover. Nevertheless, regression models developed using land cover data from the small catchments reasonably predicted concentration and export for receiving rivers. Our results illustrate the complexity of mechanisms involved in DIN export in a region with a mosaic of climate, geology, topography, soils, vegetation, and past and present land use.more » « less
An official website of the United States government

