Abstract Proteins are direct products of the genome and metabolites are functional products of interactions between the host and other factors such as environment, disease state, clinical information, etc. Omics data, including proteins and metabolites, are useful in characterizing biological processes underlying COVID-19 along with patient data and clinical information, yet few methods are available to effectively analyze such diverse and unstructured data. Using an integrated approach that combines proteomics and metabolomics data, we investigated the changes in metabolites and proteins in relation to patient characteristics (e.g., age, gender, and health outcome) and clinical information (e.g., metabolic panel and complete blood count test results). We found significant enrichment of biological indicators of lung, liver, and gastrointestinal dysfunction associated with disease severity using publicly available metabolite and protein profiles. Our analyses specifically identified enriched proteins that play a critical role in responses to injury or infection within these anatomical sites, but may contribute to excessive systemic inflammation within the context of COVID-19. Furthermore, we have used this information in conjunction with machine learning algorithms to predict the health status of patients presenting symptoms of COVID-19. This work provides a roadmap for understanding the biochemical pathways and molecular mechanisms that drive disease severity, progression, and treatment of COVID-19.
more »
« less
Temporal Context Matters: Enhancing Single Image Prediction With Disease Progression Representations
Clinical outcome or severity prediction from medical images has largely focused on learning representations from single-timepoint or snapshot scans. It has been shown that disease progression can be better characterized by temporal imaging. We therefore hypothesized that outcome predictions can be improved by utilizing the disease progression information from sequential images. We present a deep learning approach that leverages temporal progression information to improve clinical outcome predictions from single-timepoint images. In our method, a self-attention based Temporal Convolutional Network (TCN) is used to learn a representation that is most reflective of the disease trajectory. Meanwhile, a Vision Transformer is pretrained in a self-supervised fashion to extract features from single-timepoint images. The key contribution is to design a recalibration module that employs maximum mean discrepancy loss (MMD) to align distributions of the above two contextual representations. We train our system to predict clinical outcomes and severity grades from single-timepoint images. Experiments on chest and osteoarthritis radiography datasets demonstrate that our approach outperforms other state-of-the-art techniques.
more »
« less
- Award ID(s):
- 1909038
- PAR ID:
- 10355445
- Date Published:
- Journal Name:
- Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
- Page Range / eLocation ID:
- 18824-18835
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Parkinson's Disease (PD) is one of the most prevalent neurodegenerative diseases that affects tens of millions of Americans. PD is highly progressive and heterogeneous. Quite a few studies have been conducted in recent years on predictive or disease progression modeling of PD using clinical and biomarkers data. Neuroimaging, as another important information source for neurodegenerative disease, has also arisen considerable interests from the PD community. In this paper, we propose a deep learning method based on Graph Convolutional Networks (GCN) for fusing multiple modalities of brain images in relationship prediction which is useful for distinguishing PD cases from controls. On Parkinson's Progression Markers Initiative (PPMI) cohort, our approach achieved 0.9537±0.0587 AUC, compared with 0.6443±0.0223 AUC achieved by traditional approaches such as PCA.more » « less
-
Abstract Age-related macular degeneration (AMD) is the principal cause of blindness in developed countries, and its prevalence will increase to 288 million people in 2040. Therefore, automated grading and prediction methods can be highly beneficial for recognizing susceptible subjects to late-AMD and enabling clinicians to start preventive actions for them. Clinically, AMD severity is quantified by Color Fundus Photographs (CFP) of the retina, and many machine-learning-based methods are proposed for grading AMD severity. However, few models were developed to predict the longitudinal progression status, i.e. predicting future late-AMD risk based on the current CFP, which is more clinically interesting. In this paper, we propose a new deep-learning-based classification model (LONGL-Net) that can simultaneously grade the current CFP and predict the longitudinal outcome, i.e. whether the subject will be in late-AMD in the future time-point. We design a new temporal-correlation-structure-guided Generative Adversarial Network model that learns the interrelations of temporal changes in CFPs in consecutive time-points and provides interpretability for the classifier's decisions by forecasting AMD symptoms in the future CFPs. We used about 30,000 CFP images from 4,628 participants in the Age-Related Eye Disease Study. Our classifier showed average 0.905 (95% CI: 0.886–0.922) AUC and 0.762 (95% CI: 0.733–0.792) accuracy on the 3-class classification problem of simultaneously grading current time-point's AMD condition and predicting late AMD progression of subjects in the future time-point. We further validated our model on the UK Biobank dataset, where our model showed average 0.905 accuracy and 0.797 sensitivity in grading 300 CFP images.more » « less
-
The Unified Parkinson’s Disease Rating Scale (UPDRS) is used to recognize patients with Parkinson’s disease (PD) and rate its severity. The rating is crucial for disease progression monitoring and treatment adjustment. This study aims to advance the capabilities of PD management by developing an innovative framework that integrates deep learning with wearable sensor technology to enhance the precision of UPDRS assessments. We introduce a series of deep learning models to estimate UPDRS Part III scores, utilizing motion data from wearable sensors. Our approach leverages a novel Multi-shared-task Self-supervised Convolutional Neural Network–Long Short-Term Memory (CNN-LSTM) framework that processes raw gyroscope signals and their spectrogram representations. This technique aims to refine the estimation accuracy of PD severity during naturalistic human activities. Utilizing 526 min of data from 24 PD patients engaged in everyday activities, our methodology demonstrates a strong correlation of 0.89 between estimated and clinically assessed UPDRS-III scores. This model outperforms the benchmark set by single and multichannel CNN, LSTM, and CNN-LSTM models and establishes a new standard in UPDRS-III score estimation for free-body movements compared to recent state-of-the-art methods. These results signify a substantial step forward in bioengineering applications for PD monitoring, providing a robust framework for reliable and continuous assessment of PD symptoms in daily living settings.more » « less
-
null (Ed.)In order to manage the public health crisis associated with COVID-19, it is critically important that healthcare workers can quickly identify high-risk patients in order to provide effective treatment with limited resources. Statistical learning tools have the potential to help predict serious infection early-on in the progression of the disease. However, many of these techniques are unable to take full advantage of temporal data on a per-patient basis as they handle the problem as a single-instance classification. Furthermore, these algorithms rely on complete data to make their predictions. In this work, we present a novel approach to handle the temporal and missing data problems, simultaneously; our proposed Simultaneous Imputation-Multi Instance Support Vector Machine method illustrates how multiple instance learning techniques and low-rank data imputation can be utilized to accurately predict clinical outcomes of COVID-19 patients. We compare our approach against recent methods used to predict outcomes on a public dataset with a cohort of 361 COVID-19 positive patients. In addition to improved prediction performance early on in the progression of the disease, our method identifies a collection of biomarkers associated with the liver, immune system, and blood, that deserve additional study and may provide additional insight into causes of patient mortality due to COVID-19. We publish the source code for our method online.more » « less
An official website of the United States government

