S-STEM scholarships are provided to academically talented low-income engineering students with the intent of increasing retention as well as successful transfer and subsequent graduation rates for a bachelor's degree in an Engineering or Computer Science (ECS) field. Since the spring of 2020, 71 unique students have been awarded scholarships. At this time, there are 22 active scholars, 34 have already successfully transferred to complete their ECS degree and a quarter of those scholars have since graduated. Beyond the financial support, NSF S-STEM programs center on providing academic, social and professional development. In addition, the research component of this program at a midwestern HSI community college is exploring the following questions: Do students recognize themselves as engineers prior to transfer? Do students feel a sense of belonging in their Engineering and Computer Science programs? Does being an NSF S-STEM Scholar impact either of these outcomes? The importance of developing a strong engineering identity as an indicator of persistence to degree completion has been the focus of considerable research over the last fifteen years. However, there is limited understanding of how community college experiences influence engineering identity development. Since the spring of 2020, students have been completing surveys during the first six weeks of the fall semester and during the last four weeks of the spring semester. Engineering identity was explored with questions centered on interest, recognition and competence as well as self-efficacy in skills such as tinkering, design and experimentation. Sense of belonging indicators were examined in terms of inclusion, sense of belonging to the community and sense of belonging to their major. This paper will provide quantitative analysis of the data examining outcomes based on demographics including ethnicity, gender, scholar status and length of time in the program.
more »
« less
Retention of student participants in an S-STEM funded program versus comparable students in engineering
In Fall 2018 our small liberal arts university with a new engineering program was awarded an NSF S-STEM grant. Now with three cohorts admitted to the program, we present the retention data of students that have participated in the program versus a comparable control data set from the School of Engineering. The students under study range from those currently in their second year of undergraduate engineering to those that have graduated in the past two years. Thus, the data include those students that have both graduated and those that continue to seek a baccalaureate degree. In the analysis, the two comparable data sets are broken into demographics for comparison where appropriate, including race, ethnicity, GPA, starting university math course, and gender. We investigate the degree to which elements of the S-STEM program (faculty and peer mentoring, career services, and professional development trainings) yield higher retention data for the S-STEM group. With the analysis, we explore whether any of these demographic factors moderate the relationship between program participation and retention.
more »
« less
- Award ID(s):
- 1742112
- PAR ID:
- 10355508
- Date Published:
- Journal Name:
- ASEE Annual Conference proceedings
- ISSN:
- 1524-4644
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract The objectives of this study were to evaluate the current status of exposure to bio-engineering research in community college (CC) students and University of Maryland Baltimore County (UMBC) students, and to estimate relationships between research activities sponsored by the Mechanical Engineering (ME) S-STEM Scholarship Program and improvement in student enrollment/diversification, retention rates, and graduation rates. The analysis drew on data from ME undergraduate academic records at UMBC from 2008 to 2019. A survey was designed to assess the research exposure of CC and UMBC students and their evaluation of the research components included in recruitment and curriculum activities. Results show that exposure to research measured by attending a research seminar was low for the participants, around 37% for CC students and 21% for ME students at UMBC. The survey results indicate the positive impact of the scholarship programs at UMBC on the research exposure and research experience. The impact is more evident in students who originally transferred from a CC. The large increase in recruited female and CC students over the past 10 years indicated that the research-related activities of the ME S-STEM program played an instrumental role in those increases. Because of the research-related activities, the ME S-STEM program achieved retention and graduation rates higher than those in the ME undergraduate program (89% versus 60% for the 6 year graduation rate), as well a higher percentage of students enrolled in graduate school (30% versus 10%). We conclude that there is still a need to implement research-related activities in the ME undergraduate program, starting with student recruitment and continuing through the academic program. Results suggest that there is a positive impact of ME S-STEM research activities on student diversification, retention rates, and percentage of our graduates who are pursuing graduate degree.more » « less
-
Results will be presented from a 5-year NSF S-STEM scholarship program for academically talented women in engineering with financial need. Elizabethtown College’s Engineering Practices with Impact Cohort (EPIC) Scholarship program was launched with an NSF S-STEM grant awarded in 2013. The program developed a pathway for academically talented and financially needy women interested in engineering to successfully enter the STEM workforce. The program targeted three critical stages: 1) recruiting talented women into the ABET-accredited engineering program and forming a cohort of scholars, 2) leveraging and expanding existing high impact practices (including an established matriculation program, living-learning community, collaborative learning model, focused mentoring, and undergraduate research) to support women scholars during their college experience, and 3) mentoring scholars as they transitioned to the STEM workforce or graduate programs. The goals of the scholarship program were to increase the number and percent of women entering engineering at our institution and to increase the graduation/employment rate of EPIC scholars beyond that of current engineering students and beyond that of national levels for women engineers. At the end of this grant, we have roughly doubled the number of women (22.7%) and underrepresented minority students (14%) in the engineering program. This is comparable to the 2016 national average of 20.9% women and 20.6% underrepresented minority bachelor's graduates in engineering. We have also remained at a consistently high level of enrollment and retention of low-income (18.6% Pell-eligible) and first-generation college students (61%). 83% of the scholars have been retained in the engineering program or have graduated with an engineering degree, which is above the institutional and national average. The remaining scholars transferred to another major but have been retained at the institution. All of the scholars participated in a living-learning community, tutoring, focused mentoring, and a women engineers club. Almost all participated in a pre-matriculation program. 17% of the scholars additionally had an undergraduate research experience and 28% studied abroad. 100% of the scholars had engineering workforce jobs or graduate school acceptances at the time of graduation. This program successfully increased the population of underrepresented minority, low-income, and first-generation women entering the engineering workforce.more » « less
-
IRE STEM Scholars program contributes to the national need for well-educated STEM professionals by supporting the retention and graduation of high-achieving, low-income students with demonstrated financial need at Minnesota State University, Mankato. Over its six year duration, this project will fund scholarships to 120 unique full-time students. The IRE STEM Scholars Program provides a financially sustainable pathway for students across the nation to graduate with a Bachelor of Science degree in engineering and up to two years of industry experience. Students typically complete their first two years of engineering coursework at community colleges across the country. Students then join IRE and spend one transitional semester gaining training and experience to equip them with the technical, design, and professional skills needed to succeed in the engineering workforce; it is during this semester that students receive the S-STEM scholarship. During the last two years of their education, IRE students work in paid engineering co-ops, while being supported in their technical and professional development by professors, learning facilitators, and their own peers. The IRE STEM Scholars project financially supports low-income students during the transitional semester, which has two financial challenges: university tuition costs are higher than their previous community college costs, and the semester occurs before they are able to earn an engineering co-op income. In addition, the project provides personalized mentorship throughout students’ pathway to graduation, such as weekly conversations with a mentor. The overall goal of this project is to increase STEM degree completion of low-income, high-achieving undergraduates. As part of the scope of this project, a concurrent mixed-methods research study will be done on engineering students’ thriving, specifically their identity, belonging, motivation, and subjective wellbeing (or mental and physical health). This study will address the following research questions: How do undergraduate students’ engineering identity and belongingness develop over time in a co-op-based engineering program? How do undergraduate students’ motivation and identity connect to overall wellbeing in a co-op-based engineering program? Currently in its second year, the project has supported 20 students, including 6 students on co-op. These six students have been interviewed on their sense of belonging in engineering during their co-op experiences, and have provided multiple survey data points describing IRE students’ experiences in co-op and overall sense of belonging. These IRE STEM Scholars program participant-specific data along with survey data documenting the co-op experiences of all IRE students describe how co-op experiences can be used to provide a financially responsible pathway to an engineering degree for low-income, high achieving students. Future work will utilize these values to identify ways to better support the IRE STEM scholars’ identity development as they move into their first co-op experiences. This project is funded by NSF’s Scholarships in Science, Technology, Engineering, and Mathematics program, which seeks to increase the number of low-income academically talented students with demonstrated financial need who earn degrees in STEM fields. It also aims to improve the education of future STEM workers, and to generate knowledge about academic success, retention, transfer, graduation, and academic/career pathways of low-income students.more » « less
-
Shepherd, Virginia L; Chester, Ann; Bass, Kristin M (Ed.)Sustained innovation and economic strength of the U.S depends on a greater participation of underrepresented minorities in science, technology, engineering, and mathematics (STEM). University-based outreach programs that serve African American and other minority populations should do more to infuse invention education in activities that engage pre-college students from these groups to motivate them to pursue STEM degrees. The Research, Discovery, and Innovation (RDI) Summer Institute is a design and science entrepreneurship program that is offered at North Carolina Central University to high school seniors who have been accepted for admission to a STEM degree program at the university. This study found the RDI Summer Institute program to be effective based on proximal outcomes of gains in composite entrepreneurial thinking skills (entrepreneurial, managerial, engineering design, and technical skills) as perceived by the participants and measured by pre- and post-surveys. Eighty-seven percent of the pre-college participants were African Americans, showed high levels of creativity and innovativeness, and presented product ideas that were conscientious in meeting their community needs. Program impact was assessed based on near-term and distal academic outcomes in college through a rigorously designed quasi-experiment which compared 31 case-control matched pairs of students who had been RDI participants and non-RDI participants. A conditional logistic regression showed first-year retention in STEM degree programs for students who had been RDI participants was five times that of students who had been non-RDI participants. Additionally, first-year STEM retention in differential comparisons favored female students, students from very low/low SES households, and students from single parent households. Also, students who had been RDI participants performed higher in STEM gatekeeper courses, and a strong positive impact of the RDI Summer Institute program was associated with higher STEM persistence even two and three years after pre-college students participated.more » « less
An official website of the United States government

