skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 22, 2026

Title: Examining an NSF S-STEM Community College program through an Identity Lens
S-STEM scholarships are provided to academically talented low-income engineering students with the intent of increasing retention as well as successful transfer and subsequent graduation rates for a bachelor's degree in an Engineering or Computer Science (ECS) field. Since the spring of 2020, 71 unique students have been awarded scholarships. At this time, there are 22 active scholars, 34 have already successfully transferred to complete their ECS degree and a quarter of those scholars have since graduated. Beyond the financial support, NSF S-STEM programs center on providing academic, social and professional development. In addition, the research component of this program at a midwestern HSI community college is exploring the following questions: Do students recognize themselves as engineers prior to transfer? Do students feel a sense of belonging in their Engineering and Computer Science programs? Does being an NSF S-STEM Scholar impact either of these outcomes? The importance of developing a strong engineering identity as an indicator of persistence to degree completion has been the focus of considerable research over the last fifteen years. However, there is limited understanding of how community college experiences influence engineering identity development. Since the spring of 2020, students have been completing surveys during the first six weeks of the fall semester and during the last four weeks of the spring semester. Engineering identity was explored with questions centered on interest, recognition and competence as well as self-efficacy in skills such as tinkering, design and experimentation. Sense of belonging indicators were examined in terms of inclusion, sense of belonging to the community and sense of belonging to their major. This paper will provide quantitative analysis of the data examining outcomes based on demographics including ethnicity, gender, scholar status and length of time in the program.  more » « less
Award ID(s):
1929983
PAR ID:
10639171
Author(s) / Creator(s):
;
Publisher / Repository:
https://peer.asee.org/
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper and corresponding poster describe the impact of implementing an NSF S-STEM program on the overall engineering program culture at a Hispanic-serving community college. Lessons learned in earlier grants, including the importance of intentional advising, strong support services, the value of an internship, and the benefits of a makerspace environment shaped the latest proposal. Building an Academic Community of Engineering Scholars, the current grant program has continued these efforts along with collecting quantitative survey data. Scholarships are provided to academically talented low-income engineering students with the intent of increasing retention as well as successful transfer rates in order to graduate with a bachelor's degree in an Engineering or Computer Science (ECS) field. Since the spring of 2020, 43 unique students have been awarded scholarships. At this time, there are 16 active scholars, 18 have already successfully transferred to complete their ECS degree and 50% of those scholars received an additional S-STEM transfer scholarship. The remaining students have switched to applied degree programs or left college to pursue full-time employment. To develop a better understanding of the factors influencing student success, a series of overarching questions were developed for the program to examine. The focus was on the concepts of self-efficacy and sense of belonging as they relate to tutoring, experiential learning, (formally in the classroom and informally), and commitment to their degree program. One particular question has been influential in the pedagogical approach to engineering course design over the last four years. “By engaging students in experiential learning, problem-based activities, and prototyping in the Innovation lab at the beginning of their studies; can we increase both the overall number of students in the ECS program and their persistence rates? Does this hold equally true for women and under-represented minorities?” The effects of this question on the overall engineering curriculum, broader community engagement, as well as the obstacles encountered during the pandemic will be discussed as the first three years of the five-year program are examined. 
    more » « less
  2. The observations to date for an NSF S-STEM Research project will be shared as a work in progress. The NSF S-STEM program has enabled academically talented lower income scholars at a community college to receive scholarships and intentional advising since 2006. This support resulted in higher success rates based on GPA as well as higher graduation and transfer rates. In addition, the percentage of students who are historically underrepresented in the engineering and computer science fields was greater among these NSF scholars in comparison to the overall program comparison group. Starting in 2020, a research component was added to the scholarship program with a desire to better understand the development of student self-efficacy and sense of belonging. In particular, the impact of enhanced community building activities at the college using the Fablab as a central hub was of interest. The lab was developed in part to encourage commuter students to engage in more experiential learning and social collaboration between classes. While considerable research has been conducted on self-efficacy, sense of belonging and student success, there is limited data available on connections to a Fablab / makerspace environment and even less in a community college context. For the last four semesters, the NSF engineering and computer science scholars and a comparison student population have completed a survey to provide a measure of their self-efficacy relative to engineering, tinkering and design, sense of belonging, and inclusion. Observations and survey results to date will be shared. Since the timing of these surveys is such that only one occurred prior to the pandemic, there will be an attempt to disentangle the effects of the remote learning experience and discussion of the virtual approach to support services. In addition, the self-efficacy and sense of belonging measures will be analyzed for different student populations including the NSF scholars and overall comparison group as well as exploring underrepresented status in terms of gender and ethnicity. Next steps will be discussed for the following three years of the research program. 
    more » « less
  3. IRE STEM Scholars program contributes to the national need for well-educated STEM professionals by supporting the retention and graduation of high-achieving, low-income students with demonstrated financial need at Minnesota State University, Mankato. Over its six year duration, this project will fund scholarships to 120 unique full-time students. The IRE STEM Scholars Program provides a financially sustainable pathway for students across the nation to graduate with a Bachelor of Science degree in engineering and up to two years of industry experience. Students typically complete their first two years of engineering coursework at community colleges across the country. Students then join IRE and spend one transitional semester gaining training and experience to equip them with the technical, design, and professional skills needed to succeed in the engineering workforce; it is during this semester that students receive the S-STEM scholarship. During the last two years of their education, IRE students work in paid engineering co-ops, while being supported in their technical and professional development by professors, learning facilitators, and their own peers. The IRE STEM Scholars project financially supports low-income students during the transitional semester, which has two financial challenges: university tuition costs are higher than their previous community college costs, and the semester occurs before they are able to earn an engineering co-op income. In addition, the project provides personalized mentorship throughout students’ pathway to graduation, such as weekly conversations with a mentor. The overall goal of this project is to increase STEM degree completion of low-income, high-achieving undergraduates. As part of the scope of this project, a concurrent mixed-methods research study will be done on engineering students’ thriving, specifically their identity, belonging, motivation, and subjective wellbeing (or mental and physical health). This study will address the following research questions: How do undergraduate students’ engineering identity and belongingness develop over time in a co-op-based engineering program? How do undergraduate students’ motivation and identity connect to overall wellbeing in a co-op-based engineering program? Currently in its second year, the project has supported 20 students, including 6 students on co-op. These six students have been interviewed on their sense of belonging in engineering during their co-op experiences, and have provided multiple survey data points describing IRE students’ experiences in co-op and overall sense of belonging. These IRE STEM Scholars program participant-specific data along with survey data documenting the co-op experiences of all IRE students describe how co-op experiences can be used to provide a financially responsible pathway to an engineering degree for low-income, high achieving students. Future work will utilize these values to identify ways to better support the IRE STEM scholars’ identity development as they move into their first co-op experiences. This project is funded by NSF’s Scholarships in Science, Technology, Engineering, and Mathematics program, which seeks to increase the number of low-income academically talented students with demonstrated financial need who earn degrees in STEM fields. It also aims to improve the education of future STEM workers, and to generate knowledge about academic success, retention, transfer, graduation, and academic/career pathways of low-income students. 
    more » « less
  4. This project will contribute to the national need for well-educated scientists, mathematicians, engineers, and technicians by supporting the retention and graduation of high-achieving, low-income students with demonstrated financial need at Minnesota State University, Mankato. Over its six year duration, this project will fund scholarships to 120 unique full-time students who are pursuing Bachelor of Science degrees in engineering. First semester junior, primarily transfer, students at Iron Range Engineering will receive scholarships for one semester. The Iron Range Engineering (IRE) STEM Scholars Program provides a financially sustainable pathway for students across the nation to graduate with an engineering degree and up to two years of industry experience. Students typically complete their first two years of engineering coursework at community colleges across the country. Students then join IRE and spend one transitional semester gaining training and experience to equip them with the technical, design, and professional skills needed to succeed in the engineering workforce. During the last two years of their education, IRE students work in industry, earning an engineering intern salary, while being supported in their technical and professional development by professors, learning facilitators, and their own peers. The IRE STEM Scholars project will provide access to a financially responsible engineering degree for low-income students by financially supporting them during the transitional semester, which has two financial challenges: university tuition costs are higher than their previous community college costs, and the semester occurs before they are able to earn an engineering co-op income. In addition, the project will provide personalized mentorship throughout students’ pathway to graduation, such as weekly conversations with a mentor. By providing these supports, the IRE STEM Scholars project aims to prepare students to be competitive applicants for the engineering workforce with career development and engineering co-op experience. Because community colleges draw relatively representative proportions of students from a variety of backgrounds, this project has the potential to learn how transfer pathways and co-op education can support financially sustainable pathways to engineering degrees for a more diverse group of students and contribute to the development of a diverse, competitive engineering workforce. The overall goal of this project is to increase STEM degree completion of low-income, high-achieving undergraduates with demonstrated financial need. As part of the scope of this project, a concurrent mixed-methods research study will be done on engineering students’ thriving, specifically their identity, belonging, motivation, and overall wellbeing (or mental and physical health). Student outcomes have previously been measured primarily through academic markers such as graduation rates and GPA. In addition to these outcomes, this project explores ways to better support overall student thriving. This study will address the following research questions: How do undergraduate students’ engineering identity and belongingness develop over time in a co-op-based engineering program? How do undergraduate students’ motivation and identity connect to overall wellbeing in a co-op-based engineering program? In the first year of the IRE STEM Scholars Project, initial interview data describe scholars’ sense of belonging in engineering, prior to their first co-op experiences and survey data describe IRE students’ experiences in co-op and overall sense of belonging. Future work will utilize these values to identify ways to better support the IRE STEM scholars’ identity development as they move into their first co-op experiences. This project is funded by NSF’s Scholarships in Science, Technology, Engineering, and Mathematics program, which seeks to increase the number of low-income academically talented students with demonstrated financial need who earn degrees in STEM fields. It also aims to improve the education of future STEM workers, and to generate knowledge about academic success, retention, transfer, graduation, and academic/career pathways of low-income students. 
    more » « less
  5. Introduction: Chandler-Gilbert Community College (CGCC) in Arizona offers two-year degrees for diverse engineering disciplines and Artificial Intelligence and Machine Learning (AIM) studies. After their Associate’s degree, students transfer to Universities to complete their bachelor’s degree. Since the Fall of 2023, CGCC has nurtured students through the NSF S-STEM Grant initiative called Scholarships, Mentoring, and Professional Support to Improve Engineering & Artificial Intelligence Student Success at Community Colleges. This grant, also known as Reaching Engineering and Artificial Intelligence Career Heights (REACH), empowers students with scholarships, personalized mentoring, and industry-oriented activities. This study delves into the sense of belonging and academic integration of REACH recipients and their peers. Methodology: A survey was administered to students across six courses: engineering (3), AIM, chemistry, and physics. The courses were chosen because one REACH student was attending the same course, with the same instructor. The survey, adapted from Gurganus et al., was comprised of demographic data and 20 questions categorized into Sciences Identity, Expectations and Goals, Academic Integration, Sense of Belonging to the program, and Sense of Belonging to the campus. Unpaired t-tests were utilized to compare the responses of 5 REACH students with 58 of their peers, with significance set at p≤0.05. Results: Sixty-three students agreed and filled out the study, comprising 5 REACH students and 58 peers. Students are enrolled in AAS, Engineering Technology (1 REACH, 1 peers), AAS, Emphasis in Artificial Intelligence (2 REACH, 3 peers), AAS, Emphasis in Engineering (2 REACH, 30 peers), and 24 were not registered in one of those degrees. Twenty females, 41 males, and one binary student in their first to sixth semester at CGCC filled out the survey. Among those total students, 7 identified as Asian, 2 as black or African American, 11 as Hispanic or Latino, 39 as White, and 4 as Other. In the category of Sciences Identity, REACH students demonstrated a significantly stronger sense of belonging compared to their peers. Specifically, REACH recipients scored higher on three questions: "I have a strong sense of belonging to the community of engineering or AI" (REACH 4.40 vs Peers 3.47, p=0.017), "I feel like I belong in the field of engineering or AI" (REACH 4.60 vs Peers 3.71, p=0.032), and "The daily work of an engineer or AI scientist is appealing to me" (REACH 5.00 vs Peers 3.98, p=0.011). Furthermore, REACH students reported a significantly stronger sense of belonging to Chandler-Gilbert Community College compared to their peers (REACH 4.60 vs Peers 3.78, p=0.046). However, concerning academic integration, REACH students identified areas that require attention. Notably, they provided a lower score for the question "Understand what your professors expect of you academically" (REACH 1.20 vs Peers 2.00, p=0.025). REACH recipients also scored lower for: “Develop effective study skills”, “Adjust to the academic demands of college”, and “Manage your time effectively”. Academic Integration is the only category where REACH students scored less than their peers. Conclusion: The REACH initiative at CGCC has notably enhanced the sense of belonging and connection to the college among engineering and AIM students. While REACH students showed superior community affiliation, they identified areas for academic integration enhancement. A tailored workshop focusing on study skills and time management is planned for Spring 2024 to address these concerns. As the program expands in 2024, involving six more students, continued assessment and support mechanisms will foster a more inclusive and integrated academic environment. Acknowledgment: The authors would like to express their sincere thanks and gratitude to the National Science Foundation (NSF) for the Scholarship in Science, Technology, Engineering, and Mathematics (S-STEM) award No. 2220959. 
    more » « less