- PAR ID:
- 10355531
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- The Astrophysical Journal Supplement Series
- Volume:
- 257
- Issue:
- 1
- ISSN:
- 0067-0049
- Page Range / eLocation ID:
- 9
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract UV photochemistry in the surface layers of protoplanetary disks dramatically alters their composition relative to previous stages of star formation. The abundance ratio CN/HCN has long been proposed to trace the UV field in various astrophysical objects; however, to date the relationship between CN, HCN, and the UV field in disks remains ambiguous. As part of the ALMA Large Program MAPS (Molecules with ALMA at Planet-forming Scales), we present observations of CN N = 1–0 transitions at 0.″3 resolution toward five disk systems. All disks show bright CN emission within ∼50–150 au, along with a diffuse emission shelf extending up to 600 au. In all sources we find that the CN/HCN column density ratio increases with disk radius from about unity to 100, likely tracing increased UV penetration that enhances selective HCN photodissociation in the outer disk. Additionally, multiple millimeter dust gaps and rings coincide with peaks and troughs, respectively, in the CN/HCN ratio, implying that some millimeter substructures are accompanied by changes to the UV penetration in more elevated disk layers. That the CN/HCN ratio is generally high (>1) points to a robust photochemistry shaping disk chemical compositions and also means that CN is the dominant carrier of the prebiotically interesting nitrile group at most disk radii. We also find that the local column densities of CN and HCN are positively correlated despite emitting from vertically stratified disk regions, indicating that different disk layers are chemically linked. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement.more » « less
-
Context . Evidence that the chemical characteristics around low- and high-mass protostars are similar has been found: notably, a variety of carbon-chain species and complex organic molecules (COMs) form around both types. On the other hand, the chemical compositions around intermediate-mass (IM) protostars (2M ⊙<m *< 8M ⊙) have not been studied with large samples. In particular, it is unclear the extent to which carbon-chain species form around them.Aims . We aim to obtain the chemical compositions of a sample of IM protostars, focusing particularly on carbon-chain species. We also aim to derive the rotational temperatures of HC5N to confirm whether carbon-chain species are formed in the warm gas around these stars.Methods . We conducted Q-band (31.5–50 GHz) line survey observations toward 11 mainly IM protostars with the Yebes 40 m radio telescope. The target protostars were selected from a subsample of the source list of the SOFIA Massive Star Formation project. Assuming local thermodynamic equilibrium, we derived the column densities of the detected molecules and the rotational temperatures of HC5N and CH3OH.Results . Nine carbon-chain species (HC3N, HC5N, C3H, C4Hlinear -H2CCC,cyclic- C3H2, CCS, C3S, and CH3CCH), three COMs (CH3OH, CH3CHO, and CH3CN), H2CCO, HNCO, and four simple sulfur-bearing species (13CS, C34S, HCS+, and H2CS) are detected. The rotational temperatures of HC5N are derived to be ~20–30 K in three IM protostars (Cepheus E, HH288, and IRAS 20293+3952). The rotational temperatures of CH3OH are derived in five IM sources and found to be similar to those of HC5N.Conclusions . The rotational temperatures of HC5N around the three IM protostars are very similar to those around low- and high-mass protostars. These results indicate that carbon-chain molecules are formed in lukewarm gas (~20–30 K) around IM protostars via the warm carbon-chain chemistry process. Thus, carbon-chain formation occurs ubiquitously in the warm gas around protostars across a wide range of stellar masses. Carbon-chain molecules and COMs coexist around most of the target IM protostars, which is similar to the situation for low- and high-mass protostars. In summary, the chemical characteristics around protostars are the same in the low-, intermediate- and high-mass regimes. -
Abstract The Molecules with ALMA at Planet-forming Scales (MAPS) Large Program provides a detailed, high-resolution (∼10–20 au) view of molecular line emission in five protoplanetary disks at spatial scales relevant for planet formation. Here we present a systematic analysis of chemical substructures in 18 molecular lines toward the MAPS sources: IM Lup, GM Aur, AS 209, HD 163296, and MWC 480. We identify more than 200 chemical substructures, which are found at nearly all radii where line emission is detected. A wide diversity of radial morphologies—including rings, gaps, and plateaus—is observed both within each disk and across the MAPS sample. This diversity in line emission profiles is also present in the innermost 50 au. Overall, this suggests that planets form in varied chemical environments both across disks and at different radii within the same disk. Interior to 150 au, the majority of chemical substructures across the MAPS disks are spatially coincident with substructures in the millimeter continuum, indicative of physical and chemical links between the disk midplane and warm, elevated molecular emission layers. Some chemical substructures in the inner disk and most chemical substructures exterior to 150 au cannot be directly linked to dust substructure, however, which indicates that there are also other causes of chemical substructures, such as snowlines, gradients in UV photon fluxes, ionization, and radially varying elemental ratios. This implies that chemical substructures could be developed into powerful probes of different disk characteristics, in addition to influencing the environments within which planets assemble. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement.more » « less
-
Abstract H2CO is a small organic molecule widely detected in protoplanetary disks. As a precursor to grain-surface formation of CH3OH, H2CO is considered an important precursor of O-bearing organic molecules that are locked in ices. Still, since gas-phase reactions can also form H2CO, there remains an open question on the channels by which organics form in disks, and how much the grain versus the gas pathways impact the overall organic reservoir. We present spectrally and spatially resolved Atacama Large Millimeter/submillimeter Array observations of several ortho- and para-H2CO transitions toward the bright protoplanetary disk around the Herbig Ae star HD 163296. We derive column density, excitation temperature, and ortho-to-para ratio (OPR) radial profiles for H2CO, as well as disk-averaged values of
N T∼ 4 × 1012cm−2,T ex∼ 20 K, and OPR ∼ 2.7, respectively. We empirically determine the vertical structure of the emission, finding vertical heights ofz /r ∼ 0.1. From the profiles, we find a relatively constant OPR ∼ 2.7 with radius, but still consistent with 3.0 among the uncertainties, a secondary increase ofN Tin the outer disk, and lowT exvalues that decrease with disk radius. Our resulting radial, vertical, and OPR constraints suggest an increased UV penetration beyond the dust millimeter edge, consistent with an icy origin but also with cold gas-phase chemistry. This Herbig disk contrasts previous results for the T Tauri disk, TW Hya, which had a larger contribution from cold gas-phase chemistry. More observations of other sources are needed to disentangle the dominant formation pathway of H2CO in protoplanetary disks. -
Abstract We report a systematic study of all known methyl carbon chains toward TMC-1 using the second data release of the GOTHAM survey, as well as a search for larger species. Using Markov Chain Monte Carlo simulations and spectral line stacking of over 30 rotational transitions, we report statistically significant emission from methylcyanotriacetylene (CH 3 C 7 N) at a confidence level of 4.6 σ , and use it to derive a column density of ∼10 11 cm −2 . We also searched for the related species, methyltetraacetylene (CH 3 C 8 H), and place upper limits on the column density of this molecule. By carrying out the above statistical analyses for all other previously detected methyl-terminated carbon chains that have emission lines in our survey, we assess the abundances, excitation conditions, and formation chemistry of methylpolyynes (CH 3 C 2 n H) and methylcyanopolyynes (CH 3 C 2 n -1 N) in TMC-1, and compare those with predictions from a chemical model. Based on our observed trends in column density and relative populations of the A and E nuclear spin isomers, we find that the methylpolyyne and methylcyanopolyyne families exhibit stark differences from one another, pointing to separate interstellar formation pathways, which is confirmed through gas–grain chemical modeling with nautilus .more » « less