skip to main content

Title: Molecules with ALMA at Planet-forming Scales (MAPS). IX. Distribution and Properties of the Large Organic Molecules HC 3 N, CH 3 CN, and c-C 3 H 2
Abstract The precursors to larger, biologically relevant molecules are detected throughout interstellar space, but determining the presence and properties of these molecules during planet formation requires observations of protoplanetary disks at high angular resolution and sensitivity. Here, we present 0.″3 observations of HC 3 N, CH 3 CN, and c -C 3 H 2 in five protoplanetary disks observed as part of the Molecules with ALMA at Planet-forming Scales (MAPS) Large Program. We robustly detect all molecules in four of the disks (GM Aur, AS 209, HD 163296, and MWC 480) with tentative detections of c -C 3 H 2 and CH 3 CN in IM Lup. We observe a range of morphologies—central peaks, single or double rings—with no clear correlation in morphology between molecule or disk. Emission is generally compact and on scales comparable with the millimeter dust continuum. We perform both disk-integrated and radially resolved rotational diagram analysis to derive column densities and rotational temperatures. The latter reveals 5–10 times more column density in the inner 50–100 au of the disks when compared with the disk-integrated analysis. We demonstrate that CH 3 CN originates from lower relative heights in the disks when compared with HC 3 N, in more » some cases directly tracing the disk midplane. Finally, we find good agreement between the ratio of small to large nitriles in the outer disks and comets. Our results indicate that the protoplanetary disks studied here are host to significant reservoirs of large organic molecules, and that this planet- and comet-building material can be chemically similar to that in our own solar system. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement. « less
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; « less
Award ID(s):
1907832 1907653
Publication Date:
NSF-PAR ID:
10355531
Journal Name:
The Astrophysical Journal Supplement Series
Volume:
257
Issue:
1
Page Range or eLocation-ID:
9
ISSN:
0067-0049
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract UV photochemistry in the surface layers of protoplanetary disks dramatically alters their composition relative to previous stages of star formation. The abundance ratio CN/HCN has long been proposed to trace the UV field in various astrophysical objects; however, to date the relationship between CN, HCN, and the UV field in disks remains ambiguous. As part of the ALMA Large Program MAPS (Molecules with ALMA at Planet-forming Scales), we present observations of CN N = 1–0 transitions at 0.″3 resolution toward five disk systems. All disks show bright CN emission within ∼50–150 au, along with a diffuse emission shelf extending up to 600 au. In all sources we find that the CN/HCN column density ratio increases with disk radius from about unity to 100, likely tracing increased UV penetration that enhances selective HCN photodissociation in the outer disk. Additionally, multiple millimeter dust gaps and rings coincide with peaks and troughs, respectively, in the CN/HCN ratio, implying that some millimeter substructures are accompanied by changes to the UV penetration in more elevated disk layers. That the CN/HCN ratio is generally high (>1) points to a robust photochemistry shaping disk chemical compositions and also means that CN is the dominant carrier ofmore »the prebiotically interesting nitrile group at most disk radii. We also find that the local column densities of CN and HCN are positively correlated despite emitting from vertically stratified disk regions, indicating that different disk layers are chemically linked. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement.« less
  2. Context. Physical processes that govern the star and planet formation sequence influence the chemical composition and evolution of protoplanetary disks. Recent studies allude to an early start to planet formation already during the formation of a disk. To understand the chemical composition of protoplanets, we need to constrain the composition and structure of the disks from whence they are formed. Aims. We aim to determine the molecular abundance structure of the young disk around the TMC1A protostar on au scales in order to understand its chemical structure and any possible implications for disk formation. Methods. We present spatially resolved Atacama Large Millimeter/submillimeter Array observations of CO, HCO + , HCN, DCN, and SO line emission, as well as dust continuum emission, in the vicinity of TMC1A. Molecular column densities are estimated both under the assumption of optically thin emission from molecules in local thermodynamical equilibrium (LTE) as well as through more detailed non-LTE radiative transfer calculations. Results. Resolved dust continuum emission from the disk is detected between 220 and 260 GHz. Rotational transitions from HCO + , HCN, and SO are also detected from the inner 100 au region. We further report on upper limits to vibrational HCN υ 2more »= 1, DCN, and N 2 D + lines. The HCO + emission appears to trace both the Keplerian disk and the surrounding infalling rotating envelope. HCN emission peaks toward the outflow cavity region connected with the CO disk wind and toward the red-shifted part of the Keplerian disk. From the derived HCO + abundance, we estimate the ionization fraction of the disk surface, and find values that imply that the accretion process is not driven by the magneto-rotational instability. The molecular abundances averaged over the TMC1A disk are similar to its protostellar envelope and other, older Class II disks. We meanwhile find a discrepancy between the young disk’s molecular abundances relative to Solar System objects. Conclusions. Abundance comparisons between the disk and its surrounding envelope for several molecular species reveal that the bulk of planet-forming material enters the disk unaltered. Differences in HCN and H 2 O molecular abundances between the disk around TMC1A, Class II disks, and Solar System objects trace the chemical evolution during disk and planet formation.« less
  3. Abstract

    Here, we present our current updates to the gas-phase chemical reaction rates and molecular lines in the spectral synthesis codecloudy, and its implications in spectroscopic modeling of various astrophysical environments. We include energy levels, and radiative and collisional rates for HF, CF+, HC3N, ArH+, HCl, HCN, CN, CH, and CH2. Simultaneously, we expand our molecular network involving these molecules. For this purpose, we have added 561 new reactions and have updated the existing 165 molecular reaction rates involving these molecules. As a result,cloudynow predicts all the lines arising from these nine molecules. In addition, we also update H2–H2collisional data up to rotational levelsJ= 31 forv= 0. We demonstrate spectroscopic simulations of these molecules for a few astrophysical environments. Our existing model for globules in the Crab Nebula successfully predicts the observed column density of ArH+. Our model predicts a detectable amount of HeH+, OH+, and CH+for the Crab Nebula. We also model the interstellar medium toward HD185418, W31C, and NGC 253, and our predictions match with most of the observed column densities within the observed error bars. Very often molecular lines trace various physical conditions. Hence, this update will be very supportive for spectroscopic modeling of various astrophysical environments,more »particularly involving submillimeter and mid-infrared observations using the Atacama Large Millimeter/submillimeter Array and the James Webb Space Telescope, respectively.

    « less
  4. Abstract The Molecules with ALMA at Planet-forming Scales (MAPS) Large Program provides a detailed, high-resolution (∼10–20 au) view of molecular line emission in five protoplanetary disks at spatial scales relevant for planet formation. Here we present a systematic analysis of chemical substructures in 18 molecular lines toward the MAPS sources: IM Lup, GM Aur, AS 209, HD 163296, and MWC 480. We identify more than 200 chemical substructures, which are found at nearly all radii where line emission is detected. A wide diversity of radial morphologies—including rings, gaps, and plateaus—is observed both within each disk and across the MAPS sample. This diversity in line emission profiles is also present in the innermost 50 au. Overall, this suggests that planets form in varied chemical environments both across disks and at different radii within the same disk. Interior to 150 au, the majority of chemical substructures across the MAPS disks are spatially coincident with substructures in the millimeter continuum, indicative of physical and chemical links between the disk midplane and warm, elevated molecular emission layers. Some chemical substructures in the inner disk and most chemical substructures exterior to 150 au cannot be directly linked to dust substructure, however, which indicates that theremore »are also other causes of chemical substructures, such as snowlines, gradients in UV photon fluxes, ionization, and radially varying elemental ratios. This implies that chemical substructures could be developed into powerful probes of different disk characteristics, in addition to influencing the environments within which planets assemble. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement.« less
  5. Abstract The chemical composition of the inner region of protoplanetary disks can trace the composition of planetary-building material. The exact elemental composition of the inner disk has not yet been measured and tensions between models and observations still exist. Recent advancements have shown UV shielding to be able to increase the emission of organics. Here, we expand on these models and investigate how UV shielding may impact chemical composition in the inner 5 au. In this work, we use the model from Bosman et al. and expand it with a larger chemical network. We focus on the chemical abundances in the upper disk atmosphere where the effects of water UV shielding are most prominent and molecular lines originate. We find rich carbon and nitrogen chemistry with enhanced abundances of C 2 H 2 , CH 4 , HCN, CH 3 CN, and NH 3 by >3 orders of magnitude. This is caused by the self-shielding of H 2 O, which locks oxygen in water. This subsequently results in a suppression of oxygen-containing species like CO and CO 2 . The increase in C 2 H 2 seen in the model with the inclusion of water UV shielding allows us tomore »explain the observed C 2 H 2 abundance without resorting to elevated C/O ratios as water UV shielding induced an effectively oxygen-poor environment in oxygen-rich gas. Thus, water UV shielding is important for reproducing the observed abundances of hydrocarbons and nitriles. From our model result, species like CH 4 , NH 3 , and NO are expected to be observable with the James Webb Space Telescope (JWST).« less