skip to main content

Title: Emissions projections for US utilities through 2050
Abstract Decarbonization is an urgent global policy priority, with increasing movement towards zero-carbon targets in the United States and elsewhere. Given the joint decarbonization strategies of electrifying fossil fuel-based energy uses and decarbonizing the electricity supply, understanding how electricity emissions might change over time is of particular value in evaluating policy sequencing strategies. For example, is the electricity system likely to decarbonize quickly enough to motivate electrification even on relatively carbon-intensive systems? Although electricity sector decarbonization has been widely studied, limited research has focused on evaluating emissions factors at the utility level, which is where the impact of electrification strategies is operationalized. Given the existing fleet of electricity generators, ownership structures, and generator lifespans, committed emissions can be modeled at the utility level. Generator lifespans are modeled using capacity-weighted mean age-on-retirement for similar units over the last two decades, a simple empirical outcome variable reflecting the length of time the unit might reasonably be expected to operate. By also evaluating generators in wholesale power markets and designing scenarios for new-build generation, first-order annual average emissions factors can be projected forward on a multidecadal time scale at the utility level. This letter presents a new model of utility-specific annual average emissions more » projections (greenhouse gases and air pollutants) through 2050 for the United States, using a 2019 base year to define existing asset characteristics. Enabling the creation and evaluation of scenario-based projections for dynamic environmental intensity metrics in a decarbonizing electricity sector can inform life cycle and other environmental assessment studies that evaluate impact over time, in addition to highlighting particular opportunities and risks associated with the timing and location of long-lived capital investments as the fossil fuel electricity generator fleet turns over. Model results can also be used to contextualize utilities’ decarbonization commitments and timelines against their asset bases. « less
Award ID(s):
Publication Date:
Journal Name:
Environmental Research Letters
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Electric vehicles will contribute to emissions reductions in the United States, but their charging may challenge electricity grid operations. We present a data-driven, realistic model of charging demand that captures the diverse charging behaviours of future adopters in the US Western Interconnection. We study charging control and infrastructure build-out as critical factors shaping charging load and evaluate grid impact under rapid electric vehicle adoption with a detailed economic dispatch model of 2035 generation. We find that peak net electricity demand increases by up to 25% with forecast adoption and by 50% in a stress test with full electrification. Locally optimized controls and high home charging can strain the grid. Shifting instead to uncontrolled, daytime charging can reduce storage requirements, excess non-fossil fuel generation, ramping and emissions. Our results urge policymakers to reflect generation-level impacts in utility rates and deploy charging infrastructure that promotes a shift from home to daytime charging.

  2. Abstract

    Probabilistic projections of baseline (with no additional mitigation policies) future carbon emissions are important for sound climate risk assessments. Deep uncertainty surrounds many drivers of projected emissions. Here, we use a simple integrated assessment model, calibrated to century-scale data and expert assessments of baseline emissions, global economic growth, and population growth, to make probabilistic projections of carbon emissions through 2100. Under a variety of assumptions about fossil fuel resource levels and decarbonization rates, our projections largely agree with several emissions projections under current policy conditions. Our global sensitivity analysis identifies several key economic drivers of uncertainty in future emissions and shows important higher-level interactions between economic and technological parameters, while population uncertainties are less important. Our analysis also projects relatively low global economic growth rates over the remainder of the century. This illustrates the importance of additional research into economic growth dynamics for climate risk assessment, especially if pledged and future climate mitigation policies are weakened or have delayed implementations. These results showcase the power of using a simple, transparent, and calibrated model. While the simple model structure has several advantages, it also creates caveats for our results which are related to important areas for further research.

  3. Abstract. To track progress towards keeping global warming well below 2 ∘C or even 1.5 ∘C, as agreed in the Paris Agreement, comprehensiveup-to-date and reliable information on anthropogenic emissions and removalsof greenhouse gas (GHG) emissions is required. Here we compile a new synthetic dataset on anthropogenic GHG emissions for 1970–2018 with afast-track extension to 2019. Our dataset is global in coverage and includesCO2 emissions, CH4 emissions, N2O emissions, as well as those from fluorinated gases (F-gases: HFCs, PFCs, SF6, NF3) andprovides country and sector details. We build this dataset from the version 6 release of the Emissions Database for Global Atmospheric Research (EDGAR v6) and three bookkeeping models for CO2 emissions from land use,land-use change, and forestry (LULUCF). We assess the uncertainties of global greenhouse gases at the 90 % confidence interval (5th–95thpercentile range) by combining statistical analysis and comparisons ofglobal emissions inventories and top-down atmospheric measurements with anexpert judgement informed by the relevant scientific literature. We identifyimportant data gaps for F-gas emissions. The agreement between our bottom-up inventory estimates and top-downatmospheric-based emissions estimates is relatively close for some F-gasspecies (∼ 10 % or less), but estimates can differ by an order of magnitude or more for others. Our aggregated F-gas estimate is about 10 %more »lower than top-down estimates in recent years. However, emissions from excluded F-gas species such aschlorofluorocarbons (CFCs) or hydrochlorofluorocarbons (HCFCs) arecumulatively larger than the sum of the reported species. Using globalwarming potential values with a 100-year time horizon from the Sixth Assessment Report by the Intergovernmental Panel on Climate Change (IPCC),global GHG emissions in 2018 amounted to 58 ± 6.1 GtCO2 eq.consisting of CO2 from fossil fuel combustion and industry (FFI) 38 ± 3.0 GtCO2, CO2-LULUCF 5.7 ± 4.0 GtCO2, CH4 10 ± 3.1 GtCO2 eq., N2O2.6 ± 1.6 GtCO2 eq., and F-gases 1.3 ± 0.40 GtCO2 eq. Initial estimates suggest further growth of 1.3 GtCO2 eq. in GHG emissions to reach 59 ± 6.6 GtCO2 eq. by 2019. Our analysis ofglobal trends in anthropogenic GHG emissions over the past 5 decades (1970–2018) highlights a pattern of varied but sustained emissions growth. There is high confidence that global anthropogenic GHG emissions haveincreased every decade, and emissions growth has been persistent across the different (groups of) gases. There is also high confidence that globalanthropogenic GHG emissions levels were higher in 2009–2018 than in any previous decade and that GHG emissions levels grew throughout the most recent decade. While the average annual GHG emissions growth rate slowed between2009 and 2018 (1.2 % yr−1) compared to 2000–2009 (2.4 % yr−1), the absolute increase in average annual GHG emissions by decade was neverlarger than between 2000–2009 and 2009–2018. Our analysis further revealsthat there are no global sectors that show sustained reductions in GHGemissions. There are a number of countries that have reduced GHG emissionsover the past decade, but these reductions are comparatively modest andoutgrown by much larger emissions growth in some developing countries suchas China, India, and Indonesia. There is a need to further develop independent, robust, and timely emissions estimates across all gases. As such, tracking progress in climate policy requires substantial investmentsin independent GHG emissions accounting and monitoring as well as in national and international statistical infrastructures. The data associatedwith this article (Minx et al., 2021) can be found at« less
  4. Electrification of vehicles is becoming one of the main avenues for decarbonization of the transportation market. To reduce stress on the energy grid, large-scale charging will require optimal scheduling of when electricity is delivered to vehicles. Coordinated electric-vehicle charging can produce optimal, flattened loads that would improve reliability of the power system as well as reduce system costs and emissions. However, a challenge for successful introduction of coordinated deadline-scheduling of residential charging comes from the demand side: customers would need to be willing both to defer charging their vehicles and to accept less than a 100% target for battery charge. Within a coordinated electric-vehicle charging pilot run by the local utility in upstate New York, this study analyzes the necessary incentives for customers to accept giving up control of when charging of their vehicles takes place. Using data from a choice experiment implemented in an online survey of electric-vehicle owners and lessees in upstate New York (N=462), we make inference on the willingness to pay for features of hypothetical coordinated electric-vehicle charging programs. To address unobserved preference heterogeneity, we apply Variational Bayes (VB) inference to a mixed logit model. Stochastic variational inference has recently emerged as a fast and computationally-efficientmore »alternative to Markov chain Monte Carlo (MCMC) methods for scalable Bayesian estimation of discrete choice models. Our results show that individuals negatively perceive the duration of the timeframe in which the energy provider would be allowed to defer charging, even though both the desired target for battery charge and deadline would be respected. This negative monetary valuation is evidenced by an expected average reduction in the annual fee of joining the charging program of $2.64 per hour of control yielded to the energy provider. Our results also provide evidence of substantial heterogeneity in preferences. For example, the 25% quantile of the posterior distribution of the mean of the willingness to accept an additional hour of control yielded to the utility is $5.16. However, the negative valuation of the timeframe for deferring charging is compensated by positive valuation of emission savings coming from switching charging to periods of the day with a higher proportion of generation from renewable sources. Customers also positively valued discounts in the price of energy delivery.« less
  5. Executive Summary ● As the Biden-Harris administration recommits the US to the Paris Agreement, a robust national net zero emissions strategy, integrated with local and corporate decarbonization targets, will ensure the nation achieves its climate goals. A new nationwide survey of current net zero climate commitments reveals the following: ● The US has a broad foundation of local net zero ambition on which to build a robust national decarbonization pathway. At least 53% of Americans live in a jurisdiction with a subnational net zero target. Furthermore, US companies accounting for at least $5.2 trillion in yearly sales have committed to net zero. ● Discrepancies in the quality of these targets highlight the need for strong federal leadership to raise the bar for existing subnational and corporate targets and spur further ambition to meet the goals laid out in the Paris Agreement.1 ● Existing state, local and private sector targets require improved alignment in governance mechanisms, consideration of equity and use of offsets. ● To achieve net zero emissions in the US by 2050 in an equitable, just, and leastcost manner, the White House Climate Task Force and Congress should enact policies to strategically strengthen and grow subnational and corporate ambition.more »In conjunction, subnational and corporate actors must continue to set and improve upon existing targets. ● Our empirical findings indicate a strong basis of support for federal policymakers to implement a robust national net zero strategy. Four key policies will enable government leaders to connect ambition to action: ○ Pledge: Include a robust net zero pledge in the US’ Nationally Determined Contribution (NDC) submission that exceeds the United Nations Framework Convention on Climate Change (UNFCCC) Race to Zero minimum criteria and adopts key leadership practices. These practices include creating a pledge that is codified in law, covers all greenhouse gases across operations and supply chains and includes an interim target of 50% emissions reductions by 2030. ○ Plan: Publish a national net zero roadmap that includes considerations of equity and justice and places constraints on the role of offsets. ○ Proceed: Align economic recovery spending with the aims of the net zero target, develop sector-specific net zero benchmarks and template strategies and mandate net zero alignment as a condition for federal bailouts. ○ Publish: Publish an annual national progress report that includes the progress of subnational commitments.« less