skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Emissions projections for US utilities through 2050
Abstract Decarbonization is an urgent global policy priority, with increasing movement towards zero-carbon targets in the United States and elsewhere. Given the joint decarbonization strategies of electrifying fossil fuel-based energy uses and decarbonizing the electricity supply, understanding how electricity emissions might change over time is of particular value in evaluating policy sequencing strategies. For example, is the electricity system likely to decarbonize quickly enough to motivate electrification even on relatively carbon-intensive systems? Although electricity sector decarbonization has been widely studied, limited research has focused on evaluating emissions factors at the utility level, which is where the impact of electrification strategies is operationalized. Given the existing fleet of electricity generators, ownership structures, and generator lifespans, committed emissions can be modeled at the utility level. Generator lifespans are modeled using capacity-weighted mean age-on-retirement for similar units over the last two decades, a simple empirical outcome variable reflecting the length of time the unit might reasonably be expected to operate. By also evaluating generators in wholesale power markets and designing scenarios for new-build generation, first-order annual average emissions factors can be projected forward on a multidecadal time scale at the utility level. This letter presents a new model of utility-specific annual average emissions projections (greenhouse gases and air pollutants) through 2050 for the United States, using a 2019 base year to define existing asset characteristics. Enabling the creation and evaluation of scenario-based projections for dynamic environmental intensity metrics in a decarbonizing electricity sector can inform life cycle and other environmental assessment studies that evaluate impact over time, in addition to highlighting particular opportunities and risks associated with the timing and location of long-lived capital investments as the fossil fuel electricity generator fleet turns over. Model results can also be used to contextualize utilities’ decarbonization commitments and timelines against their asset bases.  more » « less
Award ID(s):
1931980
PAR ID:
10355604
Author(s) / Creator(s):
Date Published:
Journal Name:
Environmental Research Letters
Volume:
16
Issue:
8
ISSN:
1748-9326
Page Range / eLocation ID:
084049
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract To demonstrate how a mega city can lead in decarbonizing beyond legal mandates, the city of Los Angeles (LA) developed science-based, feasible pathways towards utilizing 100% renewable energy for its municipally-owned electric utility. Aside from decarbonization, renewable energy adoption can lead to co-benefits such as improving urban air quality from reductions in combustion-related emissions of oxides of nitrogen (NOx), primary fine particulate matter (PM2.5) and others. Herein, we quantify changes to air pollutant concentrations and public health from scenarios of 100% renewable electricity adoption in LA in 2045, alongside aggressive electrification of end-use sectors. Our analysis suggests that while ensuring reliable electricity supply, reductions in emissions of air pollutants associated with the 100% renewable electricity scenarios can lead to 8% citywide reductions of PM2.5concentration while increasing ozone concentration by 5% relative to a 2012 baseline year, given identical meteorology conditions. The combination of these concentration changes could result in net monetized public health benefits (driven by avoided deaths) of up to $1.4 billion in year 2045 in LA, results potentially replicable for other city-scale decarbonization scenarios. 
    more » « less
  2. The emerging prevalence of electric vehicles (EVs) in shared mobility services has led to a groundbreaking trend for decarbonizing the shared mobility sector. However, it is still unclear how to maximize the efficiency of EVs to reduce greenhouse gas (GHG) emissions while maintaining high service quality, particularly considering the ongoing transition towards a fully electrified service fleet. In this paper, focusing on meal delivery, we proposed an eco-friendly on-demand meal delivery (ODMD) system to maximize the utilities of EVs to mitigate GHG emissions and maintain low operational cost and delay cost. The main feature of our system is that its fleet consists of electric and gasoline vehicles mirroring the evolving electrification trend in the shared delivery sector. A rolling horizon framework integrated with the adaptive large neighborhood search (RHALNS) algorithm was proposed to efficiently solve the meal order dispatching and routing problem with the mixed fleet. Three delivery policies were explored in the numerical study. Experiment results demonstrated that it is necessary for online meal delivery platforms to actively collect information of electric vehicles and take initiative to employ an eco-friendly delivery policy. 
    more » « less
  3. Micro wind power systems may serve as a source of low-carbon electricity that can be integrated into cities as opposed to utility-scale wind turbines. However, the electricity generation performance of wind turbines of all capacities is highly dependent on conditions at an installation site, which can vary widely even within the same municipal region. We assess the life cycle greenhouse gas emissions (LCGHGE) and energy payback time of a novel microturbine of 2.4-kW capacity with location-specific environmental data. Potential electricity generation was modeled in the areas surrounding two US cities with ambitious decarbonization efforts and abundant wind energy resources in different climates: Austin, Texas and Minneapolis, Minnesota. The effects of system lifetime and hub height on the potential electricity generation were investigated, which identified trade-offs in higher electricity generation for taller turbines yet higher LCGHGE from greater amounts of materials needed. The LCGHGE of micro wind modeled for Austin and Minneapolis range from 53 to 293 g CO2eq/kWh, which is higher than utility-scale wind energy but still lower than fossil fuel sources of electricity. This study highlights the variability in the LCGHGE and energy payback time of micro wind power across locations, demonstrating the value of geospatial analyses for life cycle climate change impact estimates. 
    more » « less
  4. Widespread electrification of the transportation sector is a key component of most strategies for deep decarbonization of the U.S. economy. While the acceptance of EVs has grown dramat- ically over the last decade, much of this growth has been spurred by substantial support from public funds and other related policies. Major electrification on the time scales supported in many climate policy plans will require substantial investment spurred by policy. In this paper we discuss the policy options for expanding the EV market. Our particular focus is on the potential role that a Low-Carbon Fuel Standard (LCFS) can play in supporting electrification. Standards like the LCFS are typically positioned as “technology neutral”, and the LCFS itself relies upon a dense set of calculations and assumptions to rate a wide variety of fuels based upon their life-cycle carbon intensity (CI). The LCFS in California is currently directing hun- dreds of millions of dollars to the EV market in California. However, it is likely that for a LCFS to support the kinds of investments on a magnitude likely necessary to reach electrification goals, it may have to be altered in such fundamental ways as to no longer really function as a technology-neutral fuel standard. 
    more » « less
  5. Abstract Environmental inequalities are often large and consequential, exacerbating vertical inequalities of income and class and horizontal inequalities along lines of race and ethnicity. Climate policies can widen these inequalities as well as mitigate them, depending on their design. Decarbonization of the US electricity sector illustrates these possibilities. A strategy narrowly focused on carbon reduction alone is likely in some regions to increase disparities in exposure to localized co-pollutants emitted by fossil fuel combustion and, in some cases, to increase exposure in absolute terms. Strategies that in addition explicitly mandate improvements in air quality, both overall and specifically for frontline communities, can couple decarbonization with remediation of environmental inequalities and broad-based gains in public health. 
    more » « less