skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High harmonic spectra computed using time-dependent Kohn–Sham theory with Gaussian orbitals and a complex absorbing potential
High harmonic spectra for H 2 and [Formula: see text] are simulated by solving the time-dependent Kohn–Sham equation in the presence of a strong laser field using an atom-centered Gaussian representation of the density and a complex absorbing potential. The latter serves to mitigate artifacts associated with the finite extent of the basis functions, including spurious reflection of the outgoing electronic wave packet. Interference between the outgoing and reflected waves manifests as peak broadening in the spectrum as well as the appearance of spurious high-energy peaks after the harmonic progression has terminated. We demonstrate that well-resolved spectra can be obtained through the use of an atom-centered absorbing potential. As compared to grid-based algorithms, the present approach is more readily extensible to larger molecules.  more » « less
Award ID(s):
1955282
PAR ID:
10355665
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
156
Issue:
20
ISSN:
0021-9606
Page Range / eLocation ID:
204123
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. For simulations of strong field ionization using time-dependent configuration with a complex absorbing potential (TDCI-CAP), standard molecular basis set must be augmented by several sets of diffuse functions to support the wavefunction as it is distorted by the strong field and interacts with the absorbing potential. Various sets of diffuse functions used in previous studies have been extended and evaluated for their ability to model the angular dependence of strong field ionization. These sets include diffuse s, p, d and f gaussian functions with selected even-tempered exponents of the form 0.0001×2n placed on each atom. For single-centered test cases, the largest contribution to the ionization rate is from functions with a maximum in the radial distribution close to the onset of the complex absorbing potential, while functions with smaller exponents also contributed to the rate. For molecules, diffuse functions on adjacent centers overlap strongly, leading to linear dependencies. The transformation to remove these linear dependencies mixes functions of different angular momenta making it difficult to assess the importance of individual s, p, d and f functions in simulating the rate for molecules. As an alternative, a hierarchy of diffuse basis sets was constructed starting with a small set and adding one or two functions at a time. These basis sets were evaluated for their ability to reproduce the rate and the shape of the angular dependence of strong field ionization. When combined with the aug-cc-pVTZ molecular basis set and an absorbing potential starting at 3.5 times the van der Waals radius for each atom, the most diffuse s, p, d and f functions need to have exponents of 0.0032, 0.0032, 0.0064 and 0.0064, respectively, or smaller. Strong field ionization from electronegative atoms such as oxygen required additional f functions with tight exponents of 0.0512 and 0.1024. Diffuse basis sets that perform well for the angular dependence of the ionization rate with a static field are equally effective for strong field ionization with a linearly polarized 7 cycle 800 nm pulse. 
    more » « less
  2. This article presents an ultraweak discontinuous Petrov-Galerkin (DPG) formulation of the time-harmonic Maxwell equations for the vectorial envelope of the electromagnetic field in a weakly-guiding multi-mode fiber waveguide. This formulation is derived using an envelope ansatz for the vector-valued electric and magnetic field components, factoring out an oscillatory term of exp(-ikz) with a user-defined wavenumber k, where z is the longitudinal fiber axis and field propagation direction. The resulting formulation is a modified system of the time-harmonic Maxwell equations for the vectorial envelope of the propagating field. This envelope is less oscillatory in the z-direction than the original field, so that it can be more efficiently discretized and computed, enabling solutions to the vectorial DPG Maxwell system in fibers that are 1000x longer than previously possible. Different approaches for incorporating a perfectly matched layer for absorbing the outgoing wave modes at the fiber end are derived and compared numerically. The resulting formulation is used to solve a 3D Maxwell model of an ytterbium-doped active gain fiber amplifier, coupled with the heat equation for including thermal effects. The nonlinear model is then used to simulate thermally-induced transverse mode instability (TMI). The numerical experiments demonstrate that it is computationally feasible to perform simulations and analysis of real-length optical fiber laser amplifiers using discretizations of the full vectorial time-harmonic Maxwell equations. The approach promises a new high-fidelity methodology for analyzing TMI in high-power fiber laser systems and is extendable to including other nonlinearities. 
    more » « less
  3. Abstract We present a reproducible ab-initio method to produce benchmark tests between time-dependent Schrödinger equation (TDSE) in the single-active-electron approximation (SAE) and time-dependent density functional theory (TDDFT) in the highly nonlinear multiphoton and tunneling regime of strong-field physics. To this end we compare results for high-order harmonic generation from valence shells in atoms using the SAE-TDSE approach and TDDFT calculations. As key to the benchmark comparison we obtain an analytic form of SAE potentials based on density functional theory, which we applied for different atoms and ions. The ionization energies of atomic ground and excited states, as well as the energies of inner shells, for the SAE potentials agree well with experimental data. Using these potentials we find remarkable agreement between the results of the two independent numerical approaches (TDDFT and SAE-TDSE) for the high-order harmonic yields in helium, demonstrating the accuracy of the SAE potentials as well as the predictive power of SAE-TDSE and TDDFT calculations for the nonperturbative and highly nonlinear strong-field process of high harmonic generation in the ultraviolet and visible wavelength regime. Finally, as another application of the SAE potentials, high harmonic spectra from outer and inner valence shells are calculated and it is shown that unphysical artifacts in the SAE-spectra from the individual shells are removed once all the amplitudes are considered. 
    more » « less
  4. Efficient application of ultrafast laser sources from high harmonic generation requires an understanding of how the spectrum can be controlled – the extent of the highest harmonics and the strength and cleanness of the harmonic lines. We study one important aspect in the coherent build-up of macroscopic high-order harmonic generation, namely the impact of different phase distributions in the focal area on the features of the generated radiation. Specifically, we compare the high harmonic signals for the commonly-used Gouy distribution of a monochromatic beam with those for the phase distribution of a short broadband Gaussian pulse. To this end, we apply a theoretical model in which the microscopic yields are obtained via interpolation of results of the time-dependent Schrödinger equation, which are then used in an individual-emitter approach to determine the macroscopic signals. Regions of poor and good coherent build-up as a function of the position of the gas jet are identified using measures for the strength of the harmonic lines and for the impact of off-harmonic radiation. While the largest extent of the spectra as well as the strongest contribution of off-harmonic radiation is found for positioning the gas jet after the focus for both distributions, the relative strength of the harmonics is overall weaker for the short Gaussian pulse distribution and the spectra differ for a gas jet positioned at the focus. These differences are mainly caused by the additional dependence of the focal phase in the transverse direction for the short Gaussian pulse distribution. 
    more » « less
  5. High harmonic spectroscopy utilizes the extremely nonlinear optical process of high-order harmonic generation (HHG) to measure complex attosecond-scale dynamics within the emitting atom or molecule subject to a strong laser field. However, it can be difficult to compare theory and experiment, since the dynamics under investigation are often very sensitive to the laser intensity, which inevitably varies over the Gaussian profile of a typical laser beam. This discrepancy would usually be resolved by so-called macroscopic HHG simulations, but such methods almost always use a simplified model of the internal dynamics of the molecule, which is not necessarily applicable for high harmonic spectroscopy. In this Letter, we extend the existing framework of macroscopic HHG so that high-accuracyab initiocalculations can be used as the microscopic input. This new (to the best of our knowledge) approach is applied to a recent theoretical prediction involving the HHG spectra of open-shell molecules undergoing nonadiabatic dynamics. We demonstrate that the predicted features in the HHG spectrum unambiguously survive macroscopic response calculations, and furthermore they exhibit a nontrivial angular pattern in the far field. 
    more » « less