We present RL2, a robotic system for efficient and accurate localization of UHF RFID tags. In contrast to past robotic RFID localization systems, which have mostly focused on location accuracy, RL2 learns how to jointly optimize the accuracy and speed of localization. To do so, it introduces a reinforcement learning-based (RL) trajectory optimization network that learns the next best trajectory for a robot-mounted reader antenna. Our algorithm encodes the aperture length and location confidence (using a synthetic-aperture-radar formulation) from multiple RFID tags into the state observations and uses them to learn the optimal trajectory. We built an end-to-end prototype of RL2 with an antenna moving on a ceiling-mounted 2D robotic track. We evaluated RL2 and demonstrated that with the median 3D localization accuracy of 0.55m, it locates multiple RFID tags 2.13x faster compared to a baseline strategy. Our results show the potential for RL-based RFID localization to enhance the efficiency of RFID inventory processes in areas spanning manufacturing, retail, and logistics.
more »
« less
UHF RFID tag localization using pattern reconfigurable reader antenna
Passive ultra high frequency (UHF) radio frequency identification (RFID) tags have the potential to find ubiquitous use in indoor object tracking, localization, and contact tracing. We propose a machine learning-based method for RFID indoor localization using a pattern reconfigurable UHF RFID reader antenna array. The received signal strength indicator (RSSI) values (from 10,000 tags) recorded at the reader antenna units are used as features to evaluate the machine learning models with a train-test split of 75%-25%. The training and testing data is generated by a wireless ray tracing simulator. Five machine learning models: random forest regressor, decision tree regressor, Nu support vector regressor, k nearest regressor, and kernel ridge regressor are compared. Random forest regressor has the lowest localization error both in terms of average Euclidean distance (AED) and root-mean-square error (RMSE). For random forest regressor, localization error results show that 90% of the tags are within 1 meter of their true position, and 67% are within 50 cm of their true position based on Euclidean distance.
more »
« less
- Award ID(s):
- 1816387
- PAR ID:
- 10355674
- Date Published:
- Journal Name:
- 2022 IEEE 22nd Annual Wireless and Microwave Technology Conference (WAMICON)
- Page Range / eLocation ID:
- 1 to 4
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Commodity ultra-high-frequency (UHF) RFID authentication systems only provide weak user authentication, as RFID tags can be easily stolen, lost, or cloned by attackers. This paper presents the design and evaluation of SmartRFID, a novel UHF RFID authentication system to promote commodity crypto-less UHF RFID tags for security-sensitive applications. SmartRFID explores extremely popular smart devices and requires a legitimate user to enroll his smart device along with his RFID tag. Besides authenticating the RFID tag as usual, SmartRFID verifies whether the user simultaneously possesses the associated smart device with both feature-based machine learning and deep learning techniques. The user is considered authentic if and only if passing the dual verifications. Comprehensive user experiments on commodity smartwatches and RFID devices confirmed the high security and usability of SmartRFID. In particular, SmartRFID achieves a true acceptance rate of above 97.5% and a false acceptance rate of less than 0.7% based on deep learning. In addition, SmartRFID can achieve an average authentication latency of less than 2.21s, which is comparable to inputting a PIN on a door keypad or smartphone.more » « less
-
In this work, we demonstrate that it is possible to read UHF RFID tags without a carrier. Specifically, we introduce an alternative reader design that does not emit a carrier and allows reading RFID tags intended for conventional carrier-based systems. While traditional RFID tags modulate a carrier, it is important to note that a modulation circuit used for backscatter also modulates the inherent noise of the tag circuitry, including the Johnson noise, irrespective of whether a carrier is present or not. Our Modulated Noise Communication (MNC) approach leverages recent work on Modulated Johnson Noise (MJN) and can be read by an alternative RFID reader design that enables simpler, more accessible RFID readings than a conventional backscatter reader by eliminating self-jamming obstructions. MNC is shown to support wireless transmission of data packets between 2 cm to 10 cm of separation between a standard UHF RFID tag and the proposed alternative reader for data rates of 1 bps and 2 bps.more » « less
-
UHF RFID tags have been widely used for contactless inventory and tracking applications. One fundamental problem with RFID readers is their limited tag reading rate. Existing RFID readers (e.g., Impinj Speedway) can read about 35 tags per second in a read zone, which is far from enough for many applications. In this paper, we present the first-of-its-kind RFID reader (mReader), which borrows the idea of multi-user MIMO (MU-MIMO) from cellular networks to enable concurrent multi-tag reading in passive RFID systems. mReader is equipped with multiple antennas for implicit beamforming in downlink transmissions. It is enabled by three key techniques: uplink collision recovery, transition-based channel estimation, and zero-overhead channel calibration. In addition, mReader employs a Q-value adaptation algorithm for medium access control to maximize its tag reading rate. We have built a prototype of mReader on USRP X310 and demonstrated for the first time that a two-antenna reader can read two commercial off-the-shelf (COTS) tags simultaneously. Numerical results further show that mReader can improve the tag reading rate by 45% compared to existing RFID readers.more » « less
-
There is much interest in fine-grained RFID localization systems. Existing systems for accurate localization typically require infrastructure, either in the form of extensive reference tags or many antennas (e.g., antenna arrays) to localize RFID tags within their radio range. Yet, there remains a need for fine-grained RFID localization solutions that are in a compact, portable, mobile form, that can be held by users as they walk around areas to map them, such as in retail stores, warehouses, or manufacturing plants. We present the design, implementation, and evaluation of POLAR, a portable handheld system for fine-grained RFID localization. Our design introduces two key innovations that enable robust, accurate, and real-time localization of RFID tags. The first is complex-controlled polarization (CCP), a mechanism for localizing RFIDs at all orientations through software-controlled polarization of two linearly polarized antennas. The second is joint tag discovery and localization (JTDL), a method for simultaneously localizing and reading tags with zero-overhead regardless of tag orientation. Building on these two techniques, we develop an end-to-end handheld system that addresses a number of practical challenges in self-interference, efficient inventorying, and self-localization. Our evaluation demonstrates that POLAR achieves a median accuracy of a few centimeters in each of the x/y/z dimensions in practical indoor environments.more » « less
An official website of the United States government

