Open-sourced kinematic models of the da Vinci Surgical System have previously been developed using serial chains for forward and inverse kinematics. However, these models do not describe the motion of every link in the closed-loop mechanism of the da Vinci manipulators; knowing the kinematics of all components in motion is essential for the foundation of modeling the system dynamics and implementing representative simulations. This paper proposes a modeling method of the closed-loop kinematics, using the existing da Vinci kinematics and an optical motion capture link length calibration. Resulting link lengths and DH parameters are presented and used as the basis for ROS-based simulation models. The models were simulated in RViz visualization simulation and Gazebo dynamics simulation. Additionally, the closed-loop kinematic chain was verified by comparing the remote center of motion location of simulation with the hardware. Furthermore, the dynamic simulation resulted in satisfactory joint stability and performance. All models and simulations are provided as an open-source package.
more »
« less
A sEMG Proportional Control for the Gripper of Patient Side Manipulator in da Vinci Surgical System
There is a large community of people with hand disabilities, and these disabilities can be a barrier to those looking to retain or pursue surgical careers. With the development of surgical robotics technologies, it may be possible to develop user interfaces to accommodate these individuals. This paper proposes a hand-free control method for the gripper of a patient side manipulator (PSM) in the da Vinci surgical system. Using electromyography (EMG) signals, a proportional control method was tested on its ability to grasp a pressure sensor. These preliminary results demonstrate that the user can reliably control the grasping motion of the da Vinci PSM using this system. There is a strong correlation between grasping force and normalized EMG signal (r= 0.874). Moreover, the gripper can generate a step grasping force output when feeding in a generated step signal. The results in this paper demonstrate the system integration of a research EMG system with the da Vinci surgical system and are a step towards developing accessible teleoperation systems for surgeons with disabilities. Hand-free control for remaining degrees of freedom in the PSM is under development using additional input from the motion capture system.
more »
« less
- PAR ID:
- 10355675
- Date Published:
- Journal Name:
- 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society
- Page Range / eLocation ID:
- 4843 to 4848
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)An important problem in designing human-robot systems is the integration of human intent and performance in the robotic control loop, especially in complex tasks. Bimanual coordination is a complex human behavior that is critical in many fine motor tasks, including robot-assisted surgery. To fully leverage the capabilities of the robot as an intelligent and assistive agent, online recognition of bimanual coordination could be important. Robotic assistance for a suturing task, for example, will be fundamentally different during phases when the suture is wrapped around the instrument (i.e., making a c- loop), than when the ends of the suture are pulled apart. In this study, we develop an online recognition method of bimanual coordination modes (i.e., the directions and symmetries of right and left hand movements) using geometric descriptors of hand motion. We (1) develop this framework based on ideal trajectories obtained during virtual 2D bimanual path following tasks performed by human subjects operating Geomagic Touch haptic devices, (2) test the offline recognition accuracy of bi- manual direction and symmetry from human subject movement trials, and (3) evalaute how the framework can be used to characterize 3D trajectories of the da Vinci Surgical System’s surgeon-side manipulators during bimanual surgical training tasks. In the human subject trials, our geometric bimanual movement classification accuracy was 92.3% for movement direction (i.e., hands moving together, parallel, or away) and 86.0% for symmetry (e.g., mirror or point symmetry). We also show that this approach can be used for online classification of different bimanual coordination modes during needle transfer, making a C loop, and suture pulling gestures on the da Vinci system, with results matching the expected modes. Finally, we discuss how these online estimates are sensitive to task environment factors and surgeon expertise, and thus inspire future work that could leverage adaptive control strategies to enhance user skill during robot-assisted surgery.more » « less
-
The Direct Drive Hand (DDHand) project is exploring an alternative design philosophy for grippers. The conventional approach is to prioritize clamping force, leading to high gear ratios, slow motion, and poor transmission of force/motion signals. Instead, the DDHand prioritizes transparency: we view the gripper as a signal transmission channel, and seek high-bandwidth, highfidelity transmission of force and motion signals in both directions. The resulting design has no gears and no springs, occupying a new quadrant in the servo gripper design space. This paper presents the direct drive gripper design philosophy, compares the performance of different design choices, describes our current design and implementation, and demonstrates a fly-by “smack and snatch” grasping motion to show the gripper’s ability to safely detect and respond quickly to variations in the task environment.more » « less
-
Improving prosthetic hand functionality is critical in reducing abandonment rates and improving the amputee’s quality of life. Techniques such as joint force estimation and gesture recognition using myoelectric signals could enable more realistic control of the prosthetic hand. To accelerate the translation of these advanced control strategies from lab to clinic, We created a virtual prosthetic control environment that enables rich user interactions and dexterity evaluation. The virtual environment is made of two parts, namely the Unity scene for rendering and user interaction, and a Python back-end to support accurate physics simulation and communication with control algorithms. By utilizing the built-in tracking capabilities of a virtual reality headset, the user can visualize and manipulate a virtual hand without additional motion tracking setups. In the virtual environment, we demonstrate actuation of the prosthetic hand through decoded EMG signal streaming, hand tracking, and the use of a VR controller. By providing a flexible platform to investigate different control modalities, we believe that our virtual environment will allow for faster experimentation and further progress in clinical translation.more » « less
-
null (Ed.)Compliant grasping is crucial for secure handling objects not only vary in shapes but also in mechanical properties. We propose a novel soft robotic gripper with decoupled stiffness and shape control capability for performing adaptive grasping with minimum system complexity. The proposed soft fingers conform to object shapes facilitating the handling of objects of different types, shapes, and sizes. Each soft gripper finger has a length constraining mechanism (an articulable rigid backbone) and is powered by pneumatic muscle actuators. We derive the kinematic model of the gripper and use an empirical approach to simultaneously map input pressures to stiffness control and bending deformation of fingers. We use these mappings to demonstrate decoupled stiffness and shape (bending) control of various grasping configurations. We conduct tests to quantify the grip quality when holding objects as the gripper changes orientation, the ability to maintain the grip as the gripper is subjected to translational and rotational movements, and the external force perturbations required to release the object from the gripper under various stiffness and shape (bending) settings. The results validate the proposed gripper’s performance and show how the decoupled stiffness and shape control can improve the grasping quality in soft robotic grippers.more » « less