skip to main content


Title: Effects of interparticle friction on the response of 3D cyclically compressed granular material
We numerically study the effect of inter-particle friction coefficient on the response to cyclical pure shear of spherical particles in three dimensions. We focus on the rotations and translations of grains and look at the spatial distribution of these displacements as well as their probability distribution functions. We find that with increasing friction, the shear band becomes thinner and more pronounced. At low friction, the amplitude of particle rotations is homogeneously distributed in the system and is therefore mostly independent from both the affine and non-affine particle translations. In contrast, at high friction, the rotations are strongly localized in the shear zone. This work shows the importance of studying the effects of inter-particle friction on the response of granular materials to cyclic forcing, both for a better understanding of how rotations correlate to translations in sheared granular systems, and due to the relevance of cyclic forcing for most real-world applications in planetary science and industry.  more » « less
Award ID(s):
1809318
NSF-PAR ID:
10355764
Author(s) / Creator(s):
; ; ;
Editor(s):
Aguirre, M.A.; Luding, S.; Pugnaloni, L.A.; Soto, R.
Date Published:
Journal Name:
EPJ Web of Conferences
Volume:
249
ISSN:
2100-014X
Page Range / eLocation ID:
10003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In a recent paper (Zhao et al., Phys Rev X, 2022, 12: 031,021), we reported experimental observations of “ultrastable” states in a shear-jammed granular system subjected to small-amplitude cyclic shear. In such states, all the particle positions and contact forces are reproduced after each shear cycle so that a strobed image of the stresses and particle positions appears static. In the present work, we report further analyses of data from those experiments to characterize both global and local responses of ultrastable states within a shear cycle, not just the strobed dynamics. We find that ultrastable states follow a power-law relation between shear modulus and pressure with an exponentβ≈ 0.5, reminiscent of critical scaling laws near jamming. We also examine the evolution of contact forces measured using photoelasticimetry. We find that there are two types of contacts: non-persistent contacts that reversibly open and close; and persistent contacts that never open and display no measurable sliding. We show that the non-persistent contacts make a non-negligible contribution to the emergent shear modulus. We also analyze the spatial correlations of the stress tensor and compare them to the predictions of a recent theory of the emergent elasticity of granular solids, the Vector Charge Theory of Granular mechanics and dynamics (VCTG) (Nampoothiri et al., Phys Rev Lett, 2020, 125: 118,002). We show that our experimental results can be fit well by VCTG, assuming uniaxial symmetry of the contact networks. The fits reveal that the response of the ultrastable states to additional applied stress is substantially more isotropic than that of the original shear-jammed states. Our results provide important insight into the mechanical properties of frictional granular solids created by shear.

     
    more » « less
  2. null (Ed.)
    Binary granular soil mixtures, as common heterogeneous soils, are ubiquitous in nature and man-made deposits. Fines content and particle size ratio are two important gradation parameters for a binary mixture, which have potential influences on mechanical behaviours. However, experimental studies on drained shear behaviour considering the whole range of fines content and different particle size ratios are scarce in the literature. For this purpose, we performed a series of drained triaxial compression tests on dense binary silica sand mixtures with 4 different particle size ratios to systematically investigate the effects of fines content and particle size ratio on the drained shear behaviours. Based on these tests, the strength-dilation behaviour and critical state behaviour were examined. It was observed that both fines content and particle size ratio have significant influence on the stress-strain response, the critical state void ratio, the critical state friction angle, the maximum dilation angle, the peak friction angle, and the strength–dilatancy relation. The underlying mechanism for the effects of fines content and particle size ratio was discussed from the perspective of the kinematic movements at particle level. 
    more » « less
  3. “Viscosity is the most ubiquitous dissipative mechanical behavior” (Maugin, 1999). Despite its ubiquity, even for those systems where the mechanisms causing viscous and other forms of dissipation are known there are only a few quantitative models that extract the macroscopic rheological response from these microscopic mechanisms. One such mechanism is the stochastic breaking and forming of bonds which is present in polymer networks with transient cross-links, strong inter-layer bonding between graphene sheets, and sliding dry friction. In this paper we utilize a simple yet flexible model to show analytically how stochastic bonds can induce an array of rheological behaviors at the macroscale. We find that varying the bond interactions induces a Maxwell-type macroscopic material behavior with Newtonian viscosity, shear thinning, shear thickening, or solid like friction when subjected to shear at constant rates. When bond rupture is independent of the force applied, Newtonian viscosity is the predominant behavior. When bond breaking is accelerated by the applied force, a shear thinning response becomes most prevalent. Further connections of the macroscopic response to the interaction potential and rates of bonding and unbonding are illustrated through phase diagrams and analysis of limiting cases. Finally, we apply this model to polymer networks and to experimental data on “solid bridges” in polydisperse granular media. We imagine possible applications to material design through engineering bonds with specific interactions to bring about a desired macroscopic behavior. 
    more » « less
  4. We study how channel width variations influence the dynamics of free-surface granular flows. For this purpose, we extend a continuum model framework to granular flows passing through channels that narrow or widen. Our theory uses a linearized approximation to an established dense granular flow rheology and a Coulomb friction law to model interaction between flow and sidewalls. We test the theoretical predictions using two novel 40 cm-diameter drums (convex and concave) filled halfway with 2 mm diameter particles rotated at rates in which the shear layer remains shallow and dense. We apply particle tracking velocimetry to enable quantitative comparisons between experimental data and theoretical predictions. We find that our experimental kinematics and energy profiles largely agree with the theoretical predictions. In general, flows through narrowing channels are faster and deeper than flows through widening channels. The influence of width variations grows with increasing flow speed, and the form of the rate dependence changes fundamentally as the regime changes from one in which kinetic energy is dissipated locally to one in which it is advected downstream. For both regimes, theoretical scaling analysis leads us to experimentally validated power laws, in which the exponent depends on the flow regime, and the multiplicative coefficient depends on channel geometry alone. Finally, we discuss how the differences between theoretical predictions and experimental data may be useful for improving our understanding of flows through non-uniform channels.

     
    more » « less
  5. null (Ed.)
    Particle segregation is common in natural and industrial processes involving flowing granular materials. Complex, and seemingly contradictory, segregation phenomena have been observed for different boundary conditions and forcing. Using discrete element method simulations, we show that segregation of a single particle intruder can be described in a unified manner across different flow configurations. A scaling relation for the net segregation force is obtained by measuring forces on an intruder particle in controlled-velocity flows where gravity and flow kinematics are varied independently. The scaling law consists of two additive terms: a buoyancy-like gravity-induced pressure gradient term and a shear rate gradient term, both of which depend on the particle size ratio. The shear rate gradient term reflects a kinematics-driven mechanism whereby larger (smaller) intruders are pushed toward higher (lower) shear rate regions. The scaling is validated, without refitting, in wall-driven flows, inclined wall-driven flows, vertical silo flows, and free-surface flows down inclines. Comparing the segregation force with the intruder weight results in predictions of the segregation direction that match experimental and computational results for various flow configurations. 
    more » « less