skip to main content


Search for: All records

Award ID contains: 1809318

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. There is a recent surge of interest in the behavior of active particles that can at the same time align their direction of movement and synchronize their oscillations, known as swarmalators . While theoretical and numerical models of such systems are now abundant, no real-life examples have been shown to date. We present an experimental investigation of the collective motion of the nematode Turbatrix aceti that self-propel by body undulation. We discover that these nematodes can synchronize their body oscillations, forming striking traveling metachronal waves, which produces strong fluid flows. We uncover that the location and strength of this collective state can be controlled through the shape of the confining structure; in our case the contact angle of a droplet. This opens a way for producing controlled work such as on-demand flows or displacement of objects. We illustrate this by showing that the force generated by this state is sufficient to change the physics of evaporation of fluid droplets, by counteracting the surface-tension force, which allow us to estimate its strength. The relatively large size and ease of culture make Turbatrix aceti a promising model organism for experimental investigation of swarming and oscillating active matter capable of producing controllable work. 
    more » « less
  2. Aguirre, M.A. ; Luding, S. ; Pugnaloni, L.A. ; Soto, R. (Ed.)
    We numerically study the effect of inter-particle friction coefficient on the response to cyclical pure shear of spherical particles in three dimensions. We focus on the rotations and translations of grains and look at the spatial distribution of these displacements as well as their probability distribution functions. We find that with increasing friction, the shear band becomes thinner and more pronounced. At low friction, the amplitude of particle rotations is homogeneously distributed in the system and is therefore mostly independent from both the affine and non-affine particle translations. In contrast, at high friction, the rotations are strongly localized in the shear zone. This work shows the importance of studying the effects of inter-particle friction on the response of granular materials to cyclic forcing, both for a better understanding of how rotations correlate to translations in sheared granular systems, and due to the relevance of cyclic forcing for most real-world applications in planetary science and industry. 
    more » « less