skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Vulnerability of exploited deep-sea demersal species to ocean warming, deoxygenation, and acidification
Vulnerability of marine species to climate change (including ocean acidification, deoxygenation, and associated changes in food supply) depends on species’ ecological and biological characteristics. Most existing assessments focus on coastal species but systematic analysis of climate vulnerability for the deep sea is lacking. Here, we combine a fuzzy logic expert system with species biogeographical data to assess the risks of climate impacts to the population viability of 32 species of exploited demersal deep-sea species across the global ocean. Climatic hazards are projected to emerge from historical variabilities in all the recorded habitats of the studied species by the mid-twenty-first century. Species that are both at very high risk of climate impacts and highly vulnerable to fishing include Antarctic toothfish (Dissostichus mawsoni), rose fish (Sebastes norvegicus), roughhead grenadier (Macrourus berglax), Baird’s slickhead (Alepocephalus bairdii), cusk (Brosme brosme), and Portuguese dogfish (Centroscymnus coelepis). Most exploited deep-sea fishes are likely to be at higher risk of local, or even global, extinction than previously assessed because of their high vulnerability to both climate change and fishing. Spatially, a high concentration of deep-sea species that are climate vulnerable is predicted in the northern Atlantic Ocean and the Indo-Pacific region. Aligning carbon mitigation with improved fisheries management offers opportunities for overall risk reduction in the coming decades. Regional fisheries management organizations (RFMOs) have an obligation to incorporate climate change in their deliberations. In addition, deep-sea areas that are not currently managed by RFMOs should be included in existing or new international governance institutions or arrangements.  more » « less
Award ID(s):
1829623
PAR ID:
10355805
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Environmental Biology of Fishes
ISSN:
0378-1909
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Seafood from marine fisheries, such as finfishes and invertebrates, is an important source of nutrients for billions of people globally. Seafood species vary in their micronutrient concentration, their economic value, and their vulnerability to exploitation and climate change. However, fisheries management has rarely considered the nutritional quality of fisheries catches and their relation to economic, conservation and climate vulnerability dimensions. Here, we quantified and analysed the micronutrient supply and average micronutrient concentration of taxa exploited by fisheries in the Indian Ocean. We also assessed associations among taxon‐specific micronutrient concentrations, ex‐vessel prices, fishing vulnerability and climate vulnerability. We found that small pelagic finfishes, despite contributing little to the overall catch weight, were particularly rich in micronutrients, were resilient and low priced, highlighting their utility in food and nutritional security. In contrast, taxa such as tunas and cephalopods were less nutrient‐dense, more vulnerable and had higher ex‐vessel prices. Results also showed differences in catch micronutrient concentrations between countries within the Indian Ocean Rim (IOR) and Distant Water Fishing (DWF) countries. IOR country catches were dominated by taxa richer in calcium, omega‐3 fatty acids and iron but with higher climate vulnerability. DWF catches, which accounted for only 2% of the Indian Ocean's total micronutrient supplies, were relatively richer in selenium, more vulnerable to fishing and had higher ex‐vessel prices. Our results highlight the trade‐offs and synergies among nutritional, economic, conservation and climate resilience dimensions of Indian Ocean fisheries, providing key insights for nutrition‐sensitive fisheries management strategies aimed at balancing multiple priorities. 
    more » « less
  2. Southern Ocean ecosystems are globally important and vulnerable to global drivers of change, yet they remain challenging to study. Fish and squid make up a significant portion of the biomass within the Southern Ocean, filling key roles in food webs from forage to mid-trophic species and top predators. They comprise a diverse array of species uniquely adapted to the extreme habitats of the region. Adaptations such as antifreeze glycoproteins, lipid-retention, extended larval phases, delayed senescence, and energy-conserving life strategies equip Antarctic fish and squid to withstand the dark winters and yearlong subzero temperatures experienced in much of the Southern Ocean. In addition to krill exploitation, the comparatively high commercial value of Antarctic fish, particularly the lucrative toothfish, drives fisheries interests, which has included illegal fishing. Uncertainty about the population dynamics of target species and ecosystem structure and function more broadly has necessitated a precautionary, ecosystem approach to managing these stocks and enabling the recovery of depleted species. Fisheries currently remain the major local driver of change in Southern Ocean fish productivity, but global climate change presents an even greater challenge to assessing future changes. Parts of the Southern Ocean are experiencing ocean-warming, such as the West Antarctic Peninsula, while other areas, such as the Ross Sea shelf, have undergone cooling in recent years. These trends are expected to result in a redistribution of species based on their tolerances to different temperature regimes. Climate variability may impair the migratory response of these species to environmental change, while imposing increased pressures on recruitment. Fisheries and climate change, coupled with related local and global drivers such as pollution and sea ice change, have the potential to produce synergistic impacts that compound the risks to Antarctic fish and squid species. The uncertainty surrounding how different species will respond to these challenges, given their varying life histories, environmental dependencies, and resiliencies, necessitates regular assessment to inform conservation and management decisions. Urgent attention is needed to determine whether the current management strategies are suitably precautionary to achieve conservation objectives in light of the impending changes to the ecosystem. 
    more » « less
  3. Abstract Climate change impacts on fishery resources have been widely reported worldwide. Nevertheless, a knowledge gap remains for the warm-temperate Southwest Atlantic Ocean—a global warming hotspot that sustains important industrial and small-scale fisheries. By combining a trait-based framework and long-term landing records, we assessed species’ sensitivity to climate change and potential changes in the distribution of important fishery resources (n = 28; i.e., bony fishes, chondrichthyans, crustaceans, and mollusks) in Southern Brazil, Uruguay, and the northern shelf of Argentina. Most species showed moderate or high sensitivity, with mollusks (e.g., sedentary bivalves and snails) being the group with the highest sensitivity, followed by chondrichthyans. Bony fishes showed low and moderate sensitivities, while crustacean sensitivities were species-specific. The stock and/or conservation status overall contributed the most to higher sensitivity. Between 1989 and 2019, species with low and moderate sensitivity dominated regional landings, regardless of the jurisdiction analyzed. A considerable fraction of these landings consisted of species scoring high or very high on an indicator for potential to change their current distribution. These results suggest that although the bulk of past landings were from relatively climate-resilient species, future catches and even entire benthic fisheries may be jeopardized because (1) some exploited species showed high or very high sensitivities and (2) the increase in the relative representation of landings in species whose distribution may change. This paper provides novel results and insights relevant for fisheries management from a region where the effects of climate change have been overlooked, and which lacks a coordinated governance system for climate-resilient fisheries. 
    more » « less
  4. Abstract Researchers and policymakers increasingly recognize the contribution of aquatic food systems, such as fisheries, to food security and nutrition. Yet governing fisheries for nutrition objectives is complicated by the multiple overlapping processes that shape availability and access to nutrients over time, including fishing sustainability, climate change, trade dynamics, and consumer preferences. Anticipating the impact of governance interventions to sustain or enhance nutritional benefits from fisheries entails accounting for these multiple interacting influences. We develop an analytical approach to link available data on aquatic foods production, nutrition, distribution, and potential climate impacts to evaluate the nutrition implications of fishery management and post-harvest allocation interventions. We demonstrate this approach using national and publicly available datasets for five case study countries: Peru, Chile, Indonesia, Sierra Leone, and Malawi. As examples, we evaluate the potential to enhance domestic supply of key nutrients to nutritionally-vulnerable populations by a) dynamically adjusting fishing effort in response to climate impacts on fish stocks, and b) retaining aquatic foods currently diverted via trade or foreign fishing. The results indicate substantial differences across countries in terms of anticipated climate change effects, with potential for substantially increased nutrition yield in Chile and Peru under adaptive management, vs. more modest yield increases in Indonesia. The impacts of post-harvest allocation policies related to foreign fishing, exports, fishing sector, and subnational trade also vary, with exports weighing heavily on nutrient availability in Sierra Leone. This methodological approach represents a step toward operationalizing calls to manage fisheries as part of national food and nutrient supplies, in light of climate change risks. 
    more » « less
  5. Abstract Climate change manifestation in the ocean, through warming, oxygen loss, increasing acidification, and changing particulate organic carbon flux (one metric of altered food supply), is projected to affect most deep‐ocean ecosystems concomitantly with increasing direct human disturbance. Climate drivers will alter deep‐sea biodiversity and associated ecosystem services, and may interact with disturbance from resource extraction activities or even climate geoengineering. We suggest that to ensure the effective management of increasing use of the deep ocean (e.g., for bottom fishing, oil and gas extraction, and deep‐seabed mining), environmental management and developing regulations must consider climate change. Strategic planning, impact assessment and monitoring, spatial management, application of the precautionary approach, and full‐cost accounting of extraction activities should embrace climate consciousness. Coupled climate and biological modeling approaches applied in the water and on the seafloor can help accomplish this goal. For example, Earth‐System Model projections of climate‐change parameters at the seafloor reveal heterogeneity in projected climate hazard and time of emergence (beyond natural variability) in regions targeted for deep‐seabed mining. Models that combine climate‐induced changes in ocean circulation with particle tracking predict altered transport of early life stages (larvae) under climate change. Habitat suitability models can help assess the consequences of altered larval dispersal, predict climate refugia, and identify vulnerable regions for multiple species under climate change. Engaging the deep observing community can support the necessary data provisioning to mainstream climate into the development of environmental management plans. To illustrate this approach, we focus on deep‐seabed mining and the International Seabed Authority, whose mandates include regulation of all mineral‐related activities in international waters and protecting the marine environment from the harmful effects of mining. However, achieving deep‐ocean sustainability under the UN Sustainable Development Goals will require integration of climate consideration across all policy sectors. 
    more » « less