skip to main content


Title: Productivity and Change in Fish and Squid in the Southern Ocean
Southern Ocean ecosystems are globally important and vulnerable to global drivers of change, yet they remain challenging to study. Fish and squid make up a significant portion of the biomass within the Southern Ocean, filling key roles in food webs from forage to mid-trophic species and top predators. They comprise a diverse array of species uniquely adapted to the extreme habitats of the region. Adaptations such as antifreeze glycoproteins, lipid-retention, extended larval phases, delayed senescence, and energy-conserving life strategies equip Antarctic fish and squid to withstand the dark winters and yearlong subzero temperatures experienced in much of the Southern Ocean. In addition to krill exploitation, the comparatively high commercial value of Antarctic fish, particularly the lucrative toothfish, drives fisheries interests, which has included illegal fishing. Uncertainty about the population dynamics of target species and ecosystem structure and function more broadly has necessitated a precautionary, ecosystem approach to managing these stocks and enabling the recovery of depleted species. Fisheries currently remain the major local driver of change in Southern Ocean fish productivity, but global climate change presents an even greater challenge to assessing future changes. Parts of the Southern Ocean are experiencing ocean-warming, such as the West Antarctic Peninsula, while other areas, such as the Ross Sea shelf, have undergone cooling in recent years. These trends are expected to result in a redistribution of species based on their tolerances to different temperature regimes. Climate variability may impair the migratory response of these species to environmental change, while imposing increased pressures on recruitment. Fisheries and climate change, coupled with related local and global drivers such as pollution and sea ice change, have the potential to produce synergistic impacts that compound the risks to Antarctic fish and squid species. The uncertainty surrounding how different species will respond to these challenges, given their varying life histories, environmental dependencies, and resiliencies, necessitates regular assessment to inform conservation and management decisions. Urgent attention is needed to determine whether the current management strategies are suitably precautionary to achieve conservation objectives in light of the impending changes to the ecosystem.  more » « less
Award ID(s):
1947040
NSF-PAR ID:
10358557
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Ecology and Evolution
Volume:
9
ISSN:
2296-701X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Climate change manifestation in the ocean, through warming, oxygen loss, increasing acidification, and changing particulate organic carbon flux (one metric of altered food supply), is projected to affect most deep‐ocean ecosystems concomitantly with increasing direct human disturbance. Climate drivers will alter deep‐sea biodiversity and associated ecosystem services, and may interact with disturbance from resource extraction activities or even climate geoengineering. We suggest that to ensure the effective management of increasing use of the deep ocean (e.g., for bottom fishing, oil and gas extraction, and deep‐seabed mining), environmental management and developing regulations must consider climate change. Strategic planning, impact assessment and monitoring, spatial management, application of the precautionary approach, and full‐cost accounting of extraction activities should embrace climate consciousness. Coupled climate and biological modeling approaches applied in the water and on the seafloor can help accomplish this goal. For example, Earth‐System Model projections of climate‐change parameters at the seafloor reveal heterogeneity in projected climate hazard and time of emergence (beyond natural variability) in regions targeted for deep‐seabed mining. Models that combine climate‐induced changes in ocean circulation with particle tracking predict altered transport of early life stages (larvae) under climate change. Habitat suitability models can help assess the consequences of altered larval dispersal, predict climate refugia, and identify vulnerable regions for multiple species under climate change. Engaging the deep observing community can support the necessary data provisioning to mainstream climate into the development of environmental management plans. To illustrate this approach, we focus on deep‐seabed mining and the International Seabed Authority, whose mandates include regulation of all mineral‐related activities in international waters and protecting the marine environment from the harmful effects of mining. However, achieving deep‐ocean sustainability under the UN Sustainable Development Goals will require integration of climate consideration across all policy sectors.

     
    more » « less
  2. Vulnerability of marine species to climate change (including ocean acidification, deoxygenation, and associated changes in food supply) depends on species’ ecological and biological characteristics. Most existing assessments focus on coastal species but systematic analysis of climate vulnerability for the deep sea is lacking. Here, we combine a fuzzy logic expert system with species biogeographical data to assess the risks of climate impacts to the population viability of 32 species of exploited demersal deep-sea species across the global ocean. Climatic hazards are projected to emerge from historical variabilities in all the recorded habitats of the studied species by the mid-twenty-first century. Species that are both at very high risk of climate impacts and highly vulnerable to fishing include Antarctic toothfish (Dissostichus mawsoni), rose fish (Sebastes norvegicus), roughhead grenadier (Macrourus berglax), Baird’s slickhead (Alepocephalus bairdii), cusk (Brosme brosme), and Portuguese dogfish (Centroscymnus coelepis). Most exploited deep-sea fishes are likely to be at higher risk of local, or even global, extinction than previously assessed because of their high vulnerability to both climate change and fishing. Spatially, a high concentration of deep-sea species that are climate vulnerable is predicted in the northern Atlantic Ocean and the Indo-Pacific region. Aligning carbon mitigation with improved fisheries management offers opportunities for overall risk reduction in the coming decades. Regional fisheries management organizations (RFMOs) have an obligation to incorporate climate change in their deliberations. In addition, deep-sea areas that are not currently managed by RFMOs should be included in existing or new international governance institutions or arrangements. 
    more » « less
  3. null (Ed.)
    Southern Ocean ecosystems are globally important. Processes in the Antarctic atmosphere, cryosphere, and the Southern Ocean directly influence global atmospheric and oceanic systems. Southern Ocean biogeochemistry has also been shown to have global importance. In contrast, ocean ecological processes are often seen as largely separate from the rest of the global system. In this paper, we consider the degree of ecological connectivity at different trophic levels, linking Southern Ocean ecosystems with the global ocean, and their importance not only for the regional ecosystem but also the wider Earth system. We also consider the human system connections, including the role of Southern Ocean ecosystems in supporting society, culture, and economy in many nations, influencing public and political views and hence policy. Rather than Southern Ocean ecosystems being defined by barriers at particular oceanic fronts, ecological changes are gradual due to cross-front exchanges involving oceanographic processes and organism movement. Millions of seabirds and hundreds of thousands of cetaceans move north out of polar waters in the austral autumn interacting in food webs across the Southern Hemisphere, and a few species cross the equator. A number of species migrate into the east and west ocean-basin boundary current and continental shelf regions of the major southern continents. Human travel in and out of the Southern Ocean region includes fisheries, tourism, and scientific vessels in all ocean sectors. These operations arise from many nations, particularly in the Northern Hemisphere, and are important in local communities as well as national economic, scientific, and political activities. As a result of the extensive connectivity, future changes in Southern Ocean ecosystems will have consequences throughout the Earth system, affecting ecosystem services with socio-economic impacts throughout the world. The high level of connectivity also means that changes and policy decisions in marine ecosystems outside the Southern Ocean have consequences for ecosystems south of the Antarctic Polar Front. Knowledge of Southern Ocean ecosystems and their global connectivity is critical for interpreting current change, projecting future change impacts, and identifying integrated strategies for conserving and managing both the Southern Ocean and the broader Earth system. 
    more » « less
  4. null (Ed.)
    The manuscript assesses the current and expected future global drivers of Southern Ocean (SO) ecosystems. Atmospheric ozone depletion over the Antarctic since the 1970s, has been a key driver, resulting in springtime cooling of the stratosphere and intensification of the polar vortex, increasing the frequency of positive phases of the Southern Annular Mode (SAM). This increases warm air-flow over the East Pacific sector (Western Antarctic Peninsula) and cold air flow over the West Pacific sector. SAM as well as El Niño Southern Oscillation events also affect the Amundsen Sea Low leading to either positive or negative sea ice anomalies in the west and east Pacific sectors, respectively. The strengthening of westerly winds is also linked to shoaling of deep warmer water onto the continental shelves, particularly in the East Pacific and Atlantic sectors. Air and ocean warming has led to changes in the cryosphere, with glacial and ice sheet melting in both sectors, opening up new ice free areas to biological productivity, but increasing seafloor disturbance by icebergs. The increased melting is correlated with a salinity decrease particularly in the surface 100 m. Such processes could increase the availability of iron, which is currently limiting primary production over much of the SO. Increasing CO 2 is one of the most important SO anthropogenic drivers and is likely to affect marine ecosystems in the coming decades. While levels of many pollutants are lower than elsewhere, persistent organic pollutants (POPs) and plastics have been detected in the SO, with concentrations likely enhanced by migratory species. With increased marine traffic and weakening of ocean barriers the risk of the establishment of non-indigenous species is increased. The continued recovery of the ozone hole creates uncertainty over the reversal in sea ice trends, especially in the light of the abrupt transition from record high to record low Antarctic sea ice extent since spring 2016. The current rate of change in physical and anthropogenic drivers is certain to impact the Marine Ecosystem Assessment of the Southern Ocean (MEASO) region in the near future and will have a wide range of impacts across the marine ecosystem. 
    more » « less
  5. Abstract. Systematic long-term studies on ecosystem dynamics are largely lacking from the East Antarctic Southern Ocean, although it is well recognized that they are indispensable to identify the ecological impacts and risks of environmental change. Here, we present a framework for establishing a long-term cross-disciplinary study on decadal timescales. We argue that the eastern Weddell Sea and the adjacent sea to the east, off Dronning Maud Land, is a particularly well suited area for such a study, since it is based on findings from previous expeditions to this region. Moreover, since climate and environmental change have so far been comparatively muted in this area, as in the eastern Antarctic in general, a systematic long-term study of its environmental and ecological state can provide a baseline of the current situation, which will be important for an assessment of future changes from their very onset, with consistent and comparable time series data underpinning and testing models and their projections. By establishing an Integrated East Antarctic Marine Research (IEAMaR) observatory, long-term changes in ocean dynamics, geochemistry, biodiversity, and ecosystem functions and services will be systematically explored and mapped through regular autonomous and ship-based synoptic surveys. An associated long-term ecological research (LTER) programme, including experimental and modelling work, will allow for studying climate-driven ecosystem changes and interactions with impacts arising from other anthropogenic activities. This integrative approach will provide a level of long-term data availability and ecosystem understanding that are imperative to determine, understand, and project the consequences of climate change and support a sound science-informed management of future conservation efforts in the Southern Ocean. 
    more » « less