Abstract Methane seeps are highly productive deep‐sea ecosystems reliant on chemosynthetic primary production. They are increasingly affected by direct human activities that threaten key ecosystem services. Methane seepage often generates precipitation of authigenic carbonate rocks, which host diverse microbes, and a dynamic invertebrate community. By providing hard substrate, even after seepage ceases, these rocks may promote a long‐lasting ecological interaction between seep and background communities. We analyzed community composition, density, and trophic structure of invertebrates on authigenic carbonates at Mound 12, a seep on the Pacific margin of Costa Rica, using one mensurative and two manipulative experiments. We asked whether carbonate macrofaunal communities are able to survive, adapt, and recover from changes in environmental factors (i.e., seepage activity, chemosynthetic production, and food availability), and we hypothesized a key role for seepage activity in defining these communities and responses. Communities onin situcarbonates under different seepage activities showed declining density with increasing distance from the seep and a shift in composition from gastropod dominance in areas of active seepage to more annelids and peracarid crustaceans that are less dependent on chemosynthetic production under lesser seepage. Response to changing environmental context was evident from altered community composition following (1) a natural decline in seepage over successive years, (2) transplanting of carbonates to different seepage conditions for 17 months, and (3) defaunated carbonate deployments under different seepage regimes over 7.4 yr. Seep faunas on transplants to lesser seepage emerge and recover faster than transition fauna (characterized by native seep and background faunas, respectively) and are able to persist by adapting their diets or by retaining their symbiotic bacteria. The macrofaunal community colonizing defaunated carbonates deployed for 7.4 yr developed communities with a similar successional stage asin siturocks, although trophic structure was not fully recovered. Thus, macrofaunal successional dynamics are affected by habitat complexity and the availability of microbial chemosynthetic productivity. This multi‐experiment study highlights the interaction between biotic and abiotic factors at methane seeps at different time scales along a spatial gradient connecting seep and surrounding deep‐sea communities and offers insight on the resilience of deep‐sea macrofaunal communities.
more »
« less
Does substrate matter in the deep sea? A comparison of bone, wood, and carbonate rock colonizers
Continental margins host methane seeps, animal falls and wood falls, with chemosynthetic communities that may share or exchange species. The goal of this study was to examine the existence and nature of linkages among chemosynthesis-based ecosystems by deploying organic fall mimics (bone and wood) alongside defaunated carbonate rocks within high and lesser levels of seepage activity for 7.4 years. We compared community composition, density, and trophic structure of invertebrates on these hard substrates at active methane seepage and transition (less seepage) sites at Mound 12 at ~1,000 m depth, a methane seep off the Pacific coast of Costa Rica. At transition sites, the community composition on wood and bone was characteristic of natural wood- and whale-fall community composition, which rely on decay of the organic substrates. However, at active sites, seepage activity modified the relationship between fauna and substrate, seepage activity had a stronger effect in defining and homogenizing these communities and they depend less on organic decay. In contrast to community structure, macrofaunal trophic niche overlap between substrates, based on standard ellipse areas, was greater at transition sites than at active sites, except between rock and wood. Our observations suggest that whale- and wood-fall substrates can function as stepping stones for seep fauna even at later successional stages, providing hard substrate for attachment and chemosynthetic food.
more »
« less
- Award ID(s):
- 1634172
- PAR ID:
- 10355809
- Editor(s):
- Vermeij, Geerat J.
- Date Published:
- Journal Name:
- PLOS ONE
- Volume:
- 17
- Issue:
- 7
- ISSN:
- 1932-6203
- Page Range / eLocation ID:
- e0271635
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In deep‐sea environments, plant remains of several origins are found, including branches, twigs, leaves, and wood pieces, among others. As most of the deep‐sea bottoms are oligotrophic and nutrient‐limited, plant remains provide an oasis of localized organic enrichment and a substrate for colonization. Sunken wood was suggested to play an important evolutionary role in the diversification of chemosynthetic ecosystems, possibly representing stepping stones for the colonization between vent and seep ecosystems. In order to understand colonization processes of the Pacific Costa Rican meio‐epifaunal assemblages associated with sunken wood, a field experiment was conducted on Mound 12 (8°55.778′N, 84°18.730′W) at ~1,000 m water depth. Woodblocks were placed in four different habitats (Mussel beds, tube worms, near mussel beds, rubble bottoms), and different local environmental conditions (seepage‐active and seepage‐inactive sites). Seven experimental Douglas fir woodblocks (each 1,047 cm2in surface area) were deployed from the R/V Atlantis using the manned submersibleAlvinin February 2009 and recovered after 10.5 months in January 2010. Sample processing and analyses led to a data set of abundance (total 9,951 individuals) and spatial distribution of nine meio‐epifaunal higher taxa/groups. Meio‐epifaunal densities on individual woodblocks ranged from 3 to 26 ind.10 cm2. Copepods accounted for the highest abundances (75.1%), followed by nauplii larvae (11.7%) and nematodes (9.8%). The maximum number of individuals (26.3 ind.10 cm−2) was found in blocks placed in seepage‐inactive areas (near active mussel beds) in contrast to 2.9 ind.10 cm−2in active areas (within a mussel bed). A hierarchical cluster analysis grouped blocks according to seepage activity and not to habitat, but tests of similarity showed no significant differences in higher taxon composition and abundances, probably owing either to substrate homogeneity or low sample size. Copepods were the most abundant representatives, suggesting that this group is one of the most successful in colonizing in the early stage of succession, in this case while hardwood substrates are not yet decomposed or bored by bivalves.more » « less
-
Methane seeps are highly abundant marine habitats that contribute sources of chemosynthetic primary production to marine ecosystems. Seeps also factor into the global budget of methane, a potent greenhouse gas. Because of these factors, methane seeps influence not only local ocean ecology, but also biogeochemical cycles on a greater scale. Methane seeps host specialized microbial communities that vary significantly based on geography, seep gross morphology, biogeochemistry, and a diversity of other ecological factors including cross-domain species interactions. In this study, we collected sediment cores from six seep and non-seep locations from Grays and Quinault Canyons (46–47°N) off Washington State, USA, as well as one non-seep site off the coast of Oregon, USA (45°N) to quantify the scale of seep influence on biodiversity within marine habitats. These samples were profiled using 16S rRNA gene sequencing. Predicted gene functions were generated using the program PICRUSt2, and the community composition and predicted functions were compared among samples. The microbial communities at seeps varied by seep morphology and habitat, whereas the microbial communities at non-seep sites varied by water depth. Microbial community composition and predicted gene function clearly transitioned from on-seep to off-seep in samples collected from transects moving away from seeps, with a clear ecotone and high diversity where methane-fueled habitats transition into the non-seep deep sea. Our work demonstrates the microbial and metabolic sphere of influence that extends outwards from methane seep habitats.more » « less
-
Deep-sea methane seeps host highly diverse microbial communities whose biological diversity is distinct from other marine habitats. Coupled with microbial community analysis, untargeted metabolomics of environmental samples using high resolution tandem mass spectrometry provides unprecedented access to the unique specialized metabolisms of these chemosynthetic microorganisms. In addition, the diverse microbial natural products are of broad interest due to their potential applications for human and environmental health and well-being. In this exploratory study, sediment cores were collected from two methane seeps (-1000 m water depth) with very different gross geomorphologies, as well as a non-seep control site. Cores were subjected to parallel metabolomic and microbial community analyses to assess the feasibility of representative metabolite detection and identify congruent patterns between metabolites and microbes. Metabolomes generated using high resolution liquid chromatography tandem mass spectrometry were annotated with predicted structure classifications of the majority of mass features using SIRIUS and CANOPUS. The microbiome was characterized by analysis of 16S rRNA genes and analyzed both at the whole community level, as well as the small subgroup of Actinobacteria, which are known to produce societally useful compounds. Overall, the younger Dagorlad seep possessed a greater abundance of metabolites while there was more variation in abundance, number, and distribution of metabolites between samples at the older Emyn Muil seep. Lipid and lipid-like molecules displayed the greatest variation between sites and accounted for a larger proportion of metabolites found at the older seep. Overall, significant differences in composition of the microbial community mirrored the patterns of metabolite diversity within the samples; both varied greatly as a function of distance from methane seep, indicating a deterministic role of seepage. Interdisciplinary research to understand microbial and metabolic diversity is essential for understanding the processes and role of ubiquitous methane seeps in global systems and here we increase understanding of these systems by visualizing some of the chemical diversity that seeps add to marine systems.more » « less
-
Chemosynthetic ecosystems host unique geological, biogeochemical, microbial and faunistic settings, which provide key ecosystem services for human wellbeing. In the Argentine continental margin, the existence of chemosynthetic ecosystems is still unknown. We present the first finding of chemosynthetic ecosystems in the Argentine deep sea. We assessed and compared biological and geological settings for cold seeps at Malvinas Basin and Colorado Basin and a control site (no gas) at Colorado Basin. We found two cold seeps with crater-like geomorphic features (pockmarks) of 500-m and 1000-m diameter at depths of ⁓500 m. Both cold seeps exhibited methane gas bubbles trapped at the surface of the seafloor, one exhibited seepage into the water column. Cold seeps hosted dense benthic macroinvertebrates (≥300 μm) assemblages consisting mainly of polychaetes, peracarid crustaceans and mollusks. The fauna from Argentinean seeps exhibited δ13C and δ15N stable isotope signatures indicative of multiple trophic levels, supported by both chemosynthetic and photosynthetic sources of energy. The difference in bubbling to the water column was not associated with different trophic input of chemosynthetically-derived sources of energy, suggesting that gas input is mediated by the bubbles trapped in the seafloor sediments. The presence of gas bubbles trapped in the surface sediments of the ocean floor allowed the detection of ecological and trophic characteristics of active chemosynthetic ecosystems. Integration of the sub-bottom dimension can help improve our understanding of the interactions of chemosynthetic ecosystems with seafloor fluid flow in a more reliable manner than the gas plumes. These cold seeps host significant biodiversity and ecosystem functions of the deep ocean. They fall within areas tendered for oil and gas industry development, but have not been a focus of conservation efforts to date. Information provided here can inform effective conservation actions and improve our understanding of the distribution of chemosynthetic ecosystems worldwide.more » « less
An official website of the United States government

