skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on October 20, 2024

Title: Integration of untargeted metabolomics and microbial community analyses to characterize distinct deep-sea methane seeps

Deep-sea methane seeps host highly diverse microbial communities whose biological diversity is distinct from other marine habitats. Coupled with microbial community analysis, untargeted metabolomics of environmental samples using high resolution tandem mass spectrometry provides unprecedented access to the unique specialized metabolisms of these chemosynthetic microorganisms. In addition, the diverse microbial natural products are of broad interest due to their potential applications for human and environmental health and well-being. In this exploratory study, sediment cores were collected from two methane seeps (-1000 m water depth) with very different gross geomorphologies, as well as a non-seep control site. Cores were subjected to parallel metabolomic and microbial community analyses to assess the feasibility of representative metabolite detection and identify congruent patterns between metabolites and microbes. Metabolomes generated using high resolution liquid chromatography tandem mass spectrometry were annotated with predicted structure classifications of the majority of mass features using SIRIUS and CANOPUS. The microbiome was characterized by analysis of 16S rRNA genes and analyzed both at the whole community level, as well as the small subgroup of Actinobacteria, which are known to produce societally useful compounds. Overall, the younger Dagorlad seep possessed a greater abundance of metabolites while there was more variation in abundance, number, and distribution of metabolites between samples at the older Emyn Muil seep. Lipid and lipid-like molecules displayed the greatest variation between sites and accounted for a larger proportion of metabolites found at the older seep. Overall, significant differences in composition of the microbial community mirrored the patterns of metabolite diversity within the samples; both varied greatly as a function of distance from methane seep, indicating a deterministic role of seepage. Interdisciplinary research to understand microbial and metabolic diversity is essential for understanding the processes and role of ubiquitous methane seeps in global systems and here we increase understanding of these systems by visualizing some of the chemical diversity that seeps add to marine systems.

 
more » « less
Award ID(s):
2046800
NSF-PAR ID:
10530941
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Marine Science
Volume:
10
ISSN:
2296-7745
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Methane seeps are highly abundant marine habitats that contribute sources of chemosynthetic primary production to marine ecosystems. Seeps also factor into the global budget of methane, a potent greenhouse gas. Because of these factors, methane seeps influence not only local ocean ecology, but also biogeochemical cycles on a greater scale. Methane seeps host specialized microbial communities that vary significantly based on geography, seep gross morphology, biogeochemistry, and a diversity of other ecological factors including cross-domain species interactions. In this study, we collected sediment cores from six seep and non-seep locations from Grays and Quinault Canyons (46–47°N) off Washington State, USA, as well as one non-seep site off the coast of Oregon, USA (45°N) to quantify the scale of seep influence on biodiversity within marine habitats. These samples were profiled using 16S rRNA gene sequencing. Predicted gene functions were generated using the program PICRUSt2, and the community composition and predicted functions were compared among samples. The microbial communities at seeps varied by seep morphology and habitat, whereas the microbial communities at non-seep sites varied by water depth. Microbial community composition and predicted gene function clearly transitioned from on-seep to off-seep in samples collected from transects moving away from seeps, with a clear ecotone and high diversity where methane-fueled habitats transition into the non-seep deep sea. Our work demonstrates the microbial and metabolic sphere of influence that extends outwards from methane seep habitats. 
    more » « less
  2. Abstract

    In the past decade, thousands of previously unknown methane seeps have been identified on continental margins around the world. As we have come to appreciate methane seep habitats to be abundant components of marine ecosystems, we have also realized they are highly dynamic in nature. With a focus on discrete depth ranges across the Cascadia Margin, we work to further unravel the drivers of seep‐associated microbial community structure. We found highly heterogenous environments, with depth as a deterministic factor in community structure. This was associated with multiple variables that covaried with depth, including surface production, prevailing oxygen minimum zones (OMZs), and geologic and hydrographic context. Development of megafaunal seep communities appeared limited in shallow depth zones (~ 200 m). However, this effect did not extend to the structure or function of microbial communities. Siboglinid tubeworms were restricted to water depths > 1000 m, and we posit this deep distribution is driven by the prevailing OMZ limiting dispersal. Microbial community composition and distribution covaried most significantly with depth, but variables including oxygen concentration, habitat type, and organic matter, as well as iron and methane concentration, also explained the distribution of the microbial seep taxa. While members of the core seep microbiome were seen across sites, there was a high abundance of microbial taxa not previously considered within the seep microbiome as well. Our work highlights the multifaceted aspects that drive community composition beyond localized methane flux and depth, where environmental diversity adds to margin biodiversity in seep systems.

     
    more » « less
  3. At marine methane seeps, vast quantities of methane move through the shallow subseafloor, where it is largely consumed by microbial communities. This process plays an important role in global methane dynamics, but we have yet to identify all of the methane sinks in the deep sea. Here, we conducted a continental-scale survey of seven geologically diverse seafloor seeps and found that carbonate rocks from all sites host methane-oxidizing microbial communities with substantial methanotrophic potential. In laboratory-based mesocosm incubations, chimney-like carbonates from the newly described Point Dume seep off the coast of Southern California exhibited the highest rates of anaerobic methane oxidation measured to date. After a thorough analysis of physicochemical, electrical, and biological factors, we attribute this substantial metabolic activity largely to higher cell density, mineral composition, kinetic parameters including an elevated V max , and the presence of specific microbial lineages. Our data also suggest that other features, such as electrical conductance, rock particle size, and microbial community alpha diversity, may influence a sample’s methanotrophic potential, but these factors did not demonstrate clear patterns with respect to methane oxidation rates. Based on the apparent pervasiveness within seep carbonates of microbial communities capable of performing anaerobic oxidation of methane, as well as the frequent occurrence of carbonates at seeps, we suggest that rock-hosted methanotrophy may be an important contributor to marine methane consumption. 
    more » « less
  4. Despite advances in sequencing, lack of standardization makes comparisons across studies challenging and hampers insights into the structure and function of microbial communities across multiple habitats on a planetary scale. Here we present a multi-omics analysis of a diverse set of 880 microbial community samples collected for the Earth Microbiome Project. We include amplicon (16S, 18S, ITS) and shotgun metagenomic sequence data, and untargeted metabolomics data (liquid chromatography-tandem mass spectrometry and gas chromatography mass spectrometry). We used standardized protocols and analytical methods to characterize microbial communities, focusing on relationships and co-occurrences of microbially related metabolites and microbial taxa across environments, thus allowing us to explore diversity at extraordinary scale. In addition to a reference database for metagenomic and metabolomic data, we provide a framework for incorporating additional studies, enabling the expansion of existing knowledge in the form of an evolving community resource. We demonstrate the utility of this database by testing the hypothesis that every microbe and metabolite is everywhere but the environment selects. Our results show that metabolite diversity exhibits turnover and nestedness related to both microbial communities and the environment, whereas the relative abundances of microbially related metabolites vary and co-occur with specific microbial consortia in a habitat-specific manner. We additionally show the power of certain chemistry, in particular terpenoids, in distinguishing Earth’s environments (for example, terrestrial plant surfaces and soils, freshwater and marine animal stool), as well as that of certain microbes including Conexibacter woesei (terrestrial soils), Haloquadratum walsbyi (marine deposits) and Pantoea dispersa (terrestrial plant detritus). This Resource provides insight into the taxa and metabolites within microbial communities from diverse habitats across Earth, informing both microbial and chemical ecology, and provides a foundation and methods for multi-omics microbiome studies of hosts and the environment. 
    more » « less
  5. Methane seeps provide biogeochemical and microbial heterogeneity in deep-sea habitats. In the Northeast (NE) Pacific Ocean recent studies have found an abundance of seeps at varying spatial separations and within distinct biogeochemical environments ranging in oxygen, depth, and temperature. Here, we examine eight newly discovered seeps and two known seeps covering 800 km and varying across 2000 m water depth to identify: (1) novel megafaunal communities in this geographical region; (2) variations in the microbiome of seep habitats across the margin; (3) spatial and biogeochemical drivers of microbial diversity at seeps. In addition to authigenic carbonates, clam beds, microbial mats, and exposed hydrates - we also observed Siboglinidae tube worm bushes and an anomalous deep-sea barnacle adding to the overall habitats known from the NE Pacific. The microbial communities showed high variability in their spatial distribution and community structure. The seep communities formed distinct groups that included multiple groups of anaerobic methane oxidizing Archaea (ANME; 1, 2ab, 2c, and 3), often co-occurring within one site – however, there were also other sites with clearly dominant members (e.g. ANME-1s at Nehalem Bank). Sulfide oxidizers were dominated by the non-mat forming Campylobacterales and even though vertical gradients in redox potential typify seep sediments, in two cases there was not a significant change in community structure across the top five cm of sediment. We posit that these patterns were driven by ‘bubble-turbation,’ and bioirrigation by megafauna. A surprising latitudinal trend was observed in species diversity and richness with increasing richness significantly correlated to increasing latitude. Overall, our results demonstrate that heterogeneity is ubiquitous in the seep biome, spanning all faunal classes, and that the understanding of seeps and the drivers of the community structure can be improved by studying seeps at a range of spatial scales. 
    more » « less