skip to main content


Title: Exploring Preschool Data Collection and Analysis: A Pilot Study
Data collection and analysis (DCA) skills apply mathematical knowledge, such as counting, sorting, and classifying, to investigations of real-world questions. This pursuit lays the foundation for learners to develop flexible problem-solving skills with data. This pilot study tested a preschool intervention intended to support teachers in promoting young children’s DCA skills using a technology-integrated approach. A key component therein was a teacher-facing digital app that facilitated collaboration between preschool teachers and children to more easily collect data, create simple graphs, and use graphed data to engage in real-world questions and discussions. As part of a design-based research approach, this study tested the intervention’s developmental appropriateness and feasibility in four preschool classrooms (n = 5). Findings suggest that the intervention curriculum (i.e., investigations) and inclusion of the app supported teachers and children to answer data-focused questions by engaging in each step of the DCA process while applying numerous mathematics skills. Teachers reported that the app complemented curricular implementation and children demonstrated readiness to engage with, and benefit from, the investigations. Findings also indicated the developmental appropriateness and feasibility of applying this DCA approach in preschools and suggest further study of the approach.  more » « less
Award ID(s):
1933698
NSF-PAR ID:
10355871
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Education Sciences
Volume:
12
Issue:
2
ISSN:
2227-7102
Page Range / eLocation ID:
118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To support preschool children’s learning about data in an applied way that allows children to leverage their existing mathematical knowledge (i.e. counting, sorting, classifying, comparing) and apply it to answering authentic, developmentally appropriate research questions with data. To accomplish this ultimate goal, a design-based research approach [1] was used to develop and test a classroom-based preschool intervention that includes hands-on, play-based investigations with a digital app that supports and scaffolds the investigation process for teachers and children. This formative study was part of a codesign process with teachers to elicit feedback on the extent to which the series of investigations focused on data collection and analysis (DCA) and the teacher-facing app were (a) developmentally appropriate, (b) aligned with current preschool curricula and routines, (c) feasible to implement, and (d) included design elements and technology affordances teachers felt were useful and anticipated to promote learning. Researchers conducted in-depth interviews (n=10) and an online survey (n=19) with preschool teachers. Findings suggest that teaching preschoolers how to collect and analyze data in a hands-on, play-based, and developmentally appropriate way is feasible and desirable for preschool teachers. Specifically, teachers reported that the initial conceptualization of the investigations were developmentally appropriate, aligned with existing curricular activities and goals, was adaptable for the age and developmental readiness of young children, and that the affordances of the technology are likely to allow preschool children to engage meaningfully in data collection, visualization, and analysis. Findings also suggest that this approach to supporting preschool teachers and children to learn about and conduct DCA merits further study to ensure productive curricular implementation that positively influences preschoolers’ learning. These findings were used to revise the investigations and app, which showed positive outcomes when used in classrooms [2], which add to the scant literature on DCA learning for pre-schoolers and provides insights into the best ways to integrate technology into the classroom. 
    more » « less
  2. null (Ed.)
    This workshop will focus on how to teach data collection and analysis to preschoolers. Our project aims to promote preschoolers’ engagement with, and learning of, mathematics and computational thinking (CT) with a set of classroom activities that engage preschoolers in a data collection and analysis (DCA) process. To do this, the project team is engaging in an iterative cycle of development and testing of hands-on, play-based, curricular investigations with feedback from teachers. A key component of the intervention is a teacher-facing digital app (for teachers to use with students on touch-screen tablets) to support the collaboration of preschool teachers and children in collecting data, creating simple graphs, and using the graphs to answer real-world questions. The curricular investigations offer an applied context for using mathematical knowledge (i.e., counting, sorting, classifying, comparing, contrasting) to engage with real-world investigations and lay the foundation for developing flexible problem-solving skills. Each investigation follows a series of instructional tasks that scaffold the problem-solving process and includes (a) nine hands-on and play-based problem-solving investigations where children answer real-world questions by collecting data, creating simple graphs, and interpreting the graphs and. (b) a teacher- facing digital app to support specific data collection and organization steps (i.e., collecting, recording, visualizing). This workshop will describe: (1) the rationale and prior research conducted in this domain, (2) describe an intervention in development focused on data collection and analysis content for preschoolers that develop mathematical (common core standards) and computational thinking skills (K-12 Computational Thinking Framework Standards), (3) demonstrates an app in development that guides teacher and preschoolers through the investigation process and generates graphs to answer questions (NGSS practice standards), (4) report on feedback from a pilot study conducted virtually in preschool classrooms; and (5) describe developmentally appropriate practices for engaging young children in investigations, data collection, and data analysis. 
    more » « less
  3. null (Ed.)
    Children’s math self-concepts—their beliefs about themselves and math—are important for teachers, parents, and students, because they are linked to academic motivation, choices, and outcomes. There have been several attempts at improving math achievement based on the training of math skills. Here we took a complementary approach and conducted an intervention study to boost children’s math self-concepts. Our primary objective was to assess the feasibility of whether a novel multicomponent intervention—one that combines explicit and implicit approaches to help children form more positive beliefs linking themselves and math—can be administered in an authentic school setting. The intervention was conducted in Spain, a country in which math achievement is below the average of other OECD countries. We tested third grade students ( N = 180; M age = 8.79 years; 96 girls), using treatment and comparison groups and pre- and posttest assessments. A novelty of this study is that we used both implicit and explicit measures of children’s math self-concepts. For a subsample of students, we also obtained an assessment of year-end math achievement. Math self-concepts in the treatment and comparison groups did not significantly differ at pretest. Students in the treatment group demonstrated a significant increase in math self-concepts from pretest to posttest; students in the comparison group did not. In the treatment group, implicit math self-concepts at posttest were associated with higher year-end math achievement, assessed approximately 3 months after the completion of the intervention. Taken together, the results suggest that math self-concepts are malleable and that social–cognitive interventions can boost children’s beliefs about themselves and math. Based on the favorable results of this feasibility study, it is appropriate to formally test this novel multicomponent approach for improving math self-concepts using randomized controlled trial (RCT) design. 
    more » « less
  4. There is an opportunity to support shy and neurodivergent children in the development of critical executive function (EF) skills through social play. Through a within-subjects study at a preschool and a remote Zoom observation case study of neurodivergent children and their parents, I have identified the potential for StoryCarnival, a system that supports evidence-based sociodramatic play activities through e-book stories, a play-planning app, and a tangible, adult-controlled voice agent, to empower shy children to more confidently engage with their peers, to motivate neurodivergent children through various modalities, to encourage neurodivergent children to engage in symbolic play, and to afford children different types of agency in different settings. Through my future work, I hope to confirm the validity of these findings and examine the potential for StoryCarnival to support inclusive play in mixed-abilities groups through a large-scale deployment study and field studies. 
    more » « less
  5. null (Ed.)
    Abstract Autism spectrum disorder (ASD) is a lifelong developmental condition that affects an individual’s ability to communicate and relate to others. Despite such challenges, early intervention during childhood development has shown to have positive long-term benefits for individuals with ASD. Namely, early childhood development of communicative speech skills has shown to improve future literacy and academic achievement. However, the delivery of such interventions is often time-consuming. Socially assistive robots (SARs) are a potential strategic technology that could help support intervention delivery for children with ASD and increase the number of individuals that healthcare professionals can positively affect. For SARs to be effectively integrated in real-world treatment for individuals with ASD, they should follow current evidence-based practices used by therapists such as Applied Behavior Analysis (ABA). In this work, we present a study that investigates the efficacy of applying well-known ABA techniques to a robot-mediated listening comprehension intervention delivered to children with ASD at a university-based ABA clinic. The interventions were delivered in place of human therapists to teach study participants a new skill as a part of their overall treatment plan. All the children participating in the intervention improved in the skill being taught by the robot and enjoyed interacting with the robot, as evident by high occurrences of positive affect as well as engagement during the sessions. One of the three participants has also reached mastery of the skill via the robot-mediated interventions. 
    more » « less