- Award ID(s):
- 1927623
- PAR ID:
- 10355903
- Date Published:
- Journal Name:
- Nano Express
- Volume:
- 3
- Issue:
- 2
- ISSN:
- 2632-959X
- Page Range / eLocation ID:
- 025001
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Understanding the electromechanical coupling of auxetic materials offers unique opportunities to enhance the sensitivity of piezoresistive sensors. Reports on the auxetic behavior of random fiber networks have been relatively scarce due to their less pronounced Poisson's expansions than other auxetic designs adapting periodically arranged structures. In this study, the auxetic response of hierarchical pulp-carbon nanotube networks is tailored through the localized tensional micro-fracture initiated by water-printing. The interfacial junctions among multiwalled carbon nanotubes (MWCNTs) and cellulose fibers are disintegrated and reorganized to induce the buckling of a wet CNT paper composite (CPC) network. The Poisson's ratio of −49.5 is achieved at the water-printed region. The resulting piezoresistive properties of CPC sensors exhibit high sensitivity (3.3 kPa −1 ) over a wide dynamic range (6–500 000 Pa). The novel auxetic behavior of water-printed CPC paves the way for high performance and inexpensive wearable devices.more » « less
-
Abstract The demand for the capacitive sensor has attracted substantial attention in monitoring pressure due to its distinctive design and passive nature with versatile sensing capability. The effectiveness of the capacitive sensor primarily relies on the variation in thickness of the dielectric layer sandwiched between conductive electrodes. Additive manufacturing (AM), a set of advanced fabrication techniques, enables the production of functional electronic devices in a single-step process. Particularly, the 3D printing approach based on photocuring is a tailorable process in which the resin consists of multiple components that deliver essential mechanical qualities with enhanced sensitivity towards targeted measurements. However, the availability of photocurable resin exhibiting essential flexibility and dielectric properties for the UV-curing production process is limited. The necessity of a highly stable and sensitive capacitive sensor demands a photocurable polymer resin with a higher dielectric constant and conductive electrodes. The primary purpose of this study is to design and fabricate a capacitive device composed of novel photocurable Polyvinylidene fluoride (PVDF) resin utilizing an LCD process exhibiting higher resolution with electrodes embedded inside the substrate. The embedded electrode channels in PVDF substrate are filled with conductive silver paste by an injection process. The additively manufactured sensor provides pressure information by means of a change in capacitance of the dielectric material between the electrodes. X-Ray based micro CT-Scan ex-situ analysis is performed to visualize the capacitance based sensor filled with conductive electrodes. The sensor is tested to measure capacitance response with changes in pressure as a function of time that are utilized for sensitivity analysis. This work represents a significant achievement of AM integration in developing efficient and robust capacitive sensors for pressure monitoring or wearable electronic applications.
-
This research focused on testing the effect of the negative Poisson’s ratio of a carbon fiber composite on its critical buckling load. A secondary goal was to determine the accuracy of simulation compared to the experimental results for carbon fiber composites. In order to accomplish these two goals, both simulation and experimental testing were employed. For the simulation, ABAQUS software was used to determine predicted values for the critical buckling loads of auxetic and nonauxetic composites as well as the respective nonlinear force behavior of these composites. These results were then compared to experimental results of four auxetic and four non-auxetic specimens each experiencing uniaxial compressive tests. The results of simulation and experimentation showed that the critical buckling loads, and force sustained in general, of the auxetic composites were about three times higher than those of non-auxetic composites. While it appears that the negative Poisson’s ratio has a significant impact on the buckling strength of composite materials, further testing is required to determine the effects of other factors on the critical buckling loads. Along with this, the simulation was more accurate for the auxetic composites than for the non-auxetic composites. Therefore, further testing and simulation are required to determine the limits of simulation accuracy for composite structures.
-
In this study, we fabricated a highly flexible fiber-based capacitive humidity sensor using a scalable convergence fiber drawing approach. The sensor’s sensing layer is made of porous polyetherimide (PEI) with its porosity produced in situ during fiber drawing, whereas its electrodes are made of copper wires. The porosity induces capillary condensation starting at a low relative humidity (RH) level (here, 70%), resulting in a significant increase in the response of the sensor at RH levels ranging from 70% to 80%. The proposed humidity sensor shows a good sensitivity of 0.39 pF/% RH in the range of 70%–80% RH, a maximum hysteresis of 9.08% RH at 70% RH, a small temperature dependence, and a good stability over a 48 h period. This work demonstrates the first fiber-based humidity sensor fabricated using convergence fiber drawing.more » « less
-
Abstract Impacts in fiber-reinforced polymer matrix composites can severely inhibit their functionality and prematurely lead to the composite’s failure. This research focuses on determining the efficacy of a novel capacitive sensor, termed as the soft elastomeric capacitor (SEC), to monitor the magnitude of out-of-plane deformations in composites. This work forwards the development of a sensing skin that can be used as an
in situ monitoring tool for composites. The capacitive sensor can be made to arbitrary sizes and geometries. The sensor is composed of an elastomer composite that measures strains experienced by the material it is bonded to. The structure of the sensor, fabricated to function as a parallel plate capacitor, responds to impacts by transducing strains into a measurable change in capacitance. In this work, the SECs are deployed on randomly oriented fiberglass-reinforced plates with a polyester resin matrix. The material is impacted at various energy levels until the monitored composite material reaches its yielding point. The behavior of the sensor in impact detection applications below the proof resilience shows little to no change in the capacitance of the sensor. As the impacts surpass this yielding point, the sensor responds linearly with induced change in the area. The sensor performed within the expectations of the proposed model and demonstrated the efficacy of the proposed large-area sensor as a damage quantification tool in the structural health monitoring of composites.