In this position paper, we describe research on knowledge graph-empowered materials science prediction and discovery. The research consists of several key components including ontology mapping, materials data annotation, and information extraction from unstructured scholarly articles. We argue that although big data generated by simulations and experiments have motivated and accelerated the data-driven science, the distribution and heterogeneity of materials science-related big data hinders major advancements in the field. Knowledge graphs, as semantic hubs, integrate disparate data and provide a feasible solution to addressing this challenge. We design a knowledge-graph based approach for data discovery, extraction, and integration in materials science.
more »
« less
Narrative Cartography with Knowledge Graphs
Abstract Narrative cartography is a discipline which studies the interwoven nature of stories and maps. However, conventional geovisualization techniques of narratives often encounter several prominent challenges, including the data acquisition & integration challenge and the semantic challenge. To tackle these challenges, in this paper, we propose the idea of narrative cartography with knowledge graphs (KGs). Firstly, to tackle the data acquisition & integration challenge, we develop a set of KG-based GeoEnrichment toolboxes to allow users to search and retrieve relevant data from integrated cross-domain knowledge graphs for narrative mapping from within a GISystem. With the help of this tool, the retrieved data from KGs are directly materialized in a GIS format which is ready for spatial analysis and mapping. Two use cases — Magellan’s expedition and World War II — are presented to show the effectiveness of this approach. In the meantime, several limitations are identified from this approach, such as data incompleteness, semantic incompatibility, and the semantic challenge in geovisualization. For the later two limitations, we propose a modular ontology for narrative cartography, which formalizes both the map content ( Map Content Module) and the geovisualization process ( Cartography Module). We demonstrate that, by representing both the map content and the geovisualization process in KGs (an ontology), we can realize both data reusability and map reproducibility for narrative cartography.
more »
« less
- Award ID(s):
- 2033521
- PAR ID:
- 10355910
- Date Published:
- Journal Name:
- Journal of Geovisualization and Spatial Analysis
- Volume:
- 6
- Issue:
- 1
- ISSN:
- 2509-8810
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Traditional Knowledge Graphs (KGs), such as Neo4j, face challenges in managing high-dimensional relationships and capturing semantic nuances due to their deterministic nature. Quantum Natural Language Processing (QNLP) introduces probabilistic reasoning into the KG context. This integration leverages quantum principles, such as superposition, which allows relationships to exist in multiple states simultaneously, and entanglement, where the state of one entity dynamically influences the state of another. This quantum-based probabilistic reasoning provides a richer, more flexible representation of connections, moving beyond binary relationships to model the nuances and variability of real-world interactions. Our research demonstrates that QNLP enhances Neo4j’s ability to analyze context-rich data, improving tasks like entity extraction nd knowledge inference. By modeling relationship states probabilistically, QNLP addresses limitations in traditional methods, providing nuanced insights and enabling more advanced, contextaware NLP applications.more » « less
-
Few-shot Knowledge Graph (KG) Relational Reasoning aims to predict unseen triplets (i.e., query triplets) for rare relations in KGs, given only several triplets of these relations as references (i.e., support triplets). This task has gained significant traction due to the widespread use of knowledge graphs in various natural language processing applications. Previous approaches have utilized meta-training methods and manually constructed meta-relation sets to tackle this task. Recent efforts have focused on edge-mask-based methods, which exploit the structure of the contextualized graphs of target triplets (i.e., a subgraph containing relevant triplets in the KG). However, existing edge-mask-based methods have limitations in extracting insufficient information from KG and are highly influenced by spurious information in KG. To overcome these challenges, we propose SAFER (Subgraph Adaptation for Few-shot Relational Reasoning), a novel approach that effectively adapts the information in contextualized graphs to various subgraphs generated from support and query triplets to perform the prediction. Specifically, SAFER enables the extraction of more comprehensive information from support triplets while minimizing the impact of spurious information when predicting query triplets. Experimental results on three prevalent datasets demonstrate the superiority of our proposed framework SAFER.more » « less
-
Abstract MotivationEcological systems are complex. Representing heterogeneous knowledge about ecological systems is a pervasive challenge because data are generated from many subdisciplines, exist in disparate sources, and only capture a subset of interactions underpinning system dynamics. Knowledge graphs (KGs) have been successfully applied to organize heterogeneous data and to predict new linkages in complex systems. Though not previously applied broadly in ecology, KGs have much to offer in an era when system dynamics are responding to rapid changes across multiple scales. ResultsWe developed a KG to demonstrate the method’s utility for ecological problems focused on highly pathogenic avian influenza (HPAI), a highly transmissible virus with a broad host range, wide geographic distribution, and rapid evolution with pandemic potential. We describe the development of a graph to include data related to HPAI including pathogen–host associations, species distributions, and population demographics, using a semantic ontology that defines relationships within and between datasets. We use the graph to perform a set of proof-of-concept analyses validating the method and identifying patterns of HPAI ecology. We underscore the generalizable value of KGs to ecology including ability to reveal previously known relationships and testable hypotheses in support of a deeper mechanistic understanding of ecological systems. Availability and implementationThe data and code are available under the MIT License on GitHub at https://github.com/cghss-data-lab/uga-pipp.more » « less
-
Scene understanding is a key technical challenge within the autonomous driving domain. It requires a deep semantic understanding of the entities and relations found within complex physical and social environments that is both accurate and complete. In practice, this can be accomplished by representing entities in a scene and their relations as a knowledge graph (KG). This scene knowledge graph may then be utilized for the task of entity prediction, leading to improved scene understanding. In this paper, we will define and formalize this problem as Knowledge-based Entity Prediction (KEP). KEP aims to improve scene understanding by predicting potentially unrecognized entities by leveraging heterogeneous, high-level semantic knowledge of driving scenes. An innovative neuro-symbolic solution for KEP is presented, based on knowledge-infused learning, which 1) introduces a dataset agnostic ontology to describe driving scenes, 2) uses an expressive, holistic representation of scenes with knowledge graphs, and 3) proposes an effective, non-standard mapping of the KEP problem to the problem of link prediction (LP) using knowledge-graph embeddings (KGE). Using real, complex and high-quality data from urban driving scenes, we demonstrate its effectiveness by showing that the missing entities may be predicted with high precision (0.87 Hits@1) while significantly outperforming the non-semantic/rule-based baselines.more » « less
An official website of the United States government

