skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Overview of the Multi-Disciplinary Data Science (MDaS) S-STEM Scholarship Program
This paper provides an overview of the MDaS S-STEM scholarship program. With the growing need for professionals with technology and critical thinking skills related to data analysis, the MDaS program employs established recruitment and retention activities for undergraduates in STEM fields, to encourage consideration of careers in data science related fields. The purpose of the program is to provide financial and professional support to low-income and underrepresented STEM students to improve their chances of completing degrees related to data science. This paper presents the motivation for the program, its goals, structure, research questions, and the design and implementation of its bootcamp cohort building component for engaging students. The results and experiences related to its first year of operation are presented.  more » « less
Award ID(s):
1930532
PAR ID:
10356045
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
ASEE annual conference exposition proceedings
ISSN:
2153-5868
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper examines the impact of a National Science Foundation Scholarships in Science, Technology, Engineering, and Mathematics (NSF S-STEM) Program at a large, Minority-Serving institution in the western U.S. Despite growing efforts to diversify STEM fields, underrepresented minority (URM) students continue to face significant challenges in persistence and success. This scholarship program addresses these challenges by providing financial support, faculty and peer mentorship, and skills development opportunities to academically talented and low-income URM STEM students. This study evaluates how participation in the program enhances key noncognitive skills, such as students' sense of belonging, leadership and collaboration skills, and science identity, which are critical to STEM persistence. Using both survey and university-based data among the 47 participating scholars, results reveal that program participants report strong levels of sense of belonging, high efficacy in leadership and collaboration skills, and strong science/math identities. Additionally, compared to university rates, scholarship students showed above-average retention and graduation rates, with the majority pursuing graduate studies or careers in STEM. These findings highlight the importance of comprehensive support programs that integrate financial aid, mentorship, and professional development to promote persistence and success among URM students in STEM fields. 
    more » « less
  2. Eastern Mennonite University received a 5-year S-STEM award for their STEM Scholars Engaging in Local Problems (SSELP) program. The goal of this place-based, interdisciplinary scholarship program is to increase the number of academically talented, low-income students who graduate in STEM fields and either pursue immediate employment in STEM careers or STEM-related service or continue their STEM education in graduate school. In 2018 and 2019, two cohorts of seven students were recruited to major in biology, chemistry, engineering, computer science, mathematics, or environmental science. A key part of recruitment involved on-campus interviews, during a February Scholarship Day, between STEM faculty and potential scholars. As the yield rate for the event is high (54-66%), the university has continued this practice, funding additional STEM scholarships. In order to retain and graduate the scholars in STEM fields, the SSELP faculty designed and carried out various projects and activities to support the students. The SSELP Scholars participated in a first-year STEM Career Practicum class, a one-credit course that connected students with regional STEM practitioners across a variety of fields. The scholars were supported by peer tutors embedded in STEM classes, and now many are tutors themselves. They participated in collaborative projects where the cohorts worked to identify and solve a problem or need in their community. The SSELP scholars were supported by both faculty and peer mentors. Each scholarship recipient was matched with a faculty mentor in addition to an academic advisor. A faculty mentor was in a related STEM field but typically not teaching the student. Each scholar was matched with a peer mentor (junior or senior) in their intended major of study. In addition, community building activities were implemented to provide a significant framework for interaction within the cohort. To evaluate the progress of the SSELP program, multiple surveys were conducted. HERI/CIRP Freshman Survey was used in the fall of 2018 for the first cohort and 2019 for the second cohort. The survey indicated an upward shift in students’ perception of science and in making collaborative effort towards positive change. Preliminary data on the Science Motivation Questionnaire showed that the SSELP scholars began their university studies with lower averages than their non-SSELP STEM peers in almost every area of science motivation. After over three years of implementation of the NSF-funded STEM Scholars Engaging in Local Problems program, the recruitment effort has grown significantly in STEM fields in the university. Within the two cohorts, the most common majors were environmental science and engineering. While 100% of Cohorts 1 and 2 students were retained into the Fall semester of the second year, two students from Cohort 1 left the program between the third and fourth semesters of their studies. While one student from Cohort 2 had a leave of absence, they have returned to continue their studies. The support system formed among the SSELP scholars and between the scholars and faculty has benefited the students in both their academic achievement as well as their personal growth. 
    more » « less
  3. Refugee youth resettled in the United States experience two main barriers to long-term participation in STEM fields: (a) access to STEM skills and knowledge which is impacted by relocation and interrupted schooling, and (b) access to crafting positive learner identities in STEM as multi- lingual, multicultural, and multiracial youth. In this paper, we share a model for engaging refugee teens in cosmic ray research through constructing scintillator cosmic ray detectors, creating digital stories about cosmic rays, and hosting family and community science events where students share their learning with their families. This context serves as the site for ongoing ethnography exploring how refugee-background teens construct STEM-related identities and identifying supportive and unsupportive instructional practices. This paper summarizes the key program details and findings to date. 
    more » « less
  4. Research has shown that student achievement is influenced by their access to, or possession of, various forms of capital. These forms of capital include financial capital, academic capital (prior academic preparation and access to academic support services), cultural capital (the attitudes, knowledge, and behaviors related to education which students are exposed to by members of their family or community), and social capital (the resources students have access to as a result of being members of groups or networks). For community college students, many with high financial need and the first in their families to go to college (especially those from underrepresented minority groups), developing programs to increase access to these various forms of capital is critical to their success. This paper describes how a small federally designated Hispanic-serving community college has developed a scholarship program for financially needy community college students intending to transfer to a four-year institution to pursue a bachelor’s degree in a STEM field. Developed through a National Science Foundation Scholarships in Science, Technology, Engineering, and Mathematics (S-STEM) grant, the program involves a collaboration among STEM faculty, college staff, administrators, student organizations, and partners in industry, four-year institutions, local high schools, and professional organizations. In addition to providing financial support through the scholarships, student access to academic capital is increased through an intensive math review program, tutoring, study groups, supplemental instruction, and research internship opportunities. Access to cultural and social capital is increased by providing scholars with faculty mentors; engaging students with STEM faculty, university researchers, and industry professionals through field trips, summer internships, professional organizations, and student clubs; supporting student and faculty participation at professional conferences, and providing opportunities for students and their families to interact with faculty and staff. The paper details the development of the program, and its impact over the last five years on enhancing the success of STEM students as determined from data on student participation in various program activities, student attitudinal and self-efficacy surveys, and academic performance including persistence, retention, transfer and graduation. 
    more » « less
  5. Consistent with national trends, only about ½ of students who intend to major in STEM disciplines at Maryville College (MC) complete bachelor’s degrees in these fields. The Scots Science Scholars (S3) program was funded through the National Science Foundation’s STEM Talent Extension Program to increase the number of students graduating with STEM degrees from MC. The S3 program enrolls college freshmen who have an interest in STEM majors and math ACT scores between 21 and 27, with emphasis on students from groups underrepresented in STEM and first-generation college students. The program consists of a summer bridge, a living-learning community, early engagement in STEM research, a seminar series that exposes students to STEM careers and research fields, academic support through a first-year seminar class, peer tutoring, and time-management counseling. The program has enrolled 6 cohorts of students (n = 97) since 2013, (54% female, 22% underrepresented minorities and 35% first-generation college students). From 2013-2017, S3 compared favorably to the general college population: 96% of all S3 completed the first year of college, 69% declared STEM majors, and 85% returned to the college for a second year (compared to 71%, p < 0.001). Overall, S 3 students persist at the college longer than non-S3 students (P<0.01). Compared to a matched control group, S 3 had significantly higher STEM major declaration rates (68% vs. 38%), higher rates of STEM retention through the junior year (41% vs. 20%), and improved overall college persistence (P< 0.01). Students report high levels of satisfaction with the summer program. At the end of the summer program, students report gains in skills and attitudes that are important for success in STEM. They also perform significantly better on math and chemistry assessments after completing the program. College-wide, the number of students enrolled in STEM majors at Maryville has increased by 52% since the inception of S3 , and STEM undergraduate research productivity has increased markedly. Our data suggest the S3 program is an important component of institutional changes that are increasing the STEM population and building a robust and productive STEM culture at a liberal arts college. 
    more » « less