In the era of cloud computing and big data analysis, how to efficiently share and utilize medical information scattered across various care providers has become a critical problem. This paper proposes a new framework for sharing medical data in a secure and privacy-preserving way. This framework holistically integrates multi-authority attribute based encryption, blockchain and smart contract, as well as software defined networking to define and enforce sharing policies. Specifically in our framework, patients' medical records are encrypted and stored in hospital databases, where strict access controls are enforced with attribute based encryption coupled with privacy level classification. Our framework leverages blockchain technology to connect scattered private databases from participating hospitals for efficient and secure data provision, smart contracts to enable the business logic of clinical data usage, and software defined networking to revoke sharing privileges. The performance evaluation of our prototype demonstrates that the associated computation costs are reasonable in practice.
more »
« less
Apply Trust Computing and Privacy Preserving Smart Contracts to Manage, Share, and Analyze Multi-site Clinical Trial Data
Multi-site clinical trial systems face security challenges when streamlining information sharing while protecting patient privacy. In addition, patient enrollment, transparency, traceability, data integrity, and reporting in clinical trial systems are all critical aspects of maintaining data compliance. A Blockchain-based clinical trial framework has been proposed by lots of researchers and industrial companies recently, but its limitations of lack of data governance, limited confidentiality, and high communication overhead made data-sharing systems insecure and not efficient.
We propose π²πππΎπππΊ, a privacy-preserving smart contracts framework, to manage, share and analyze clinical trial data on fabric private chaincode (FPC). Compared to public Blockchain, fabric has fewer participants with an efficient consensus protocol. π²πππΎπππΊ consists of several modules: patient consent and clinical trial approval management chaincode, secure execution for confidential data sharing, API Gateway, and decentralized data governance with adaptive threshold signature (ATS). We implemented two versions of π²πππΎπππΊ with non-SGX deploys on AWS blockchain and SGX-based on a local data center. We evaluated the response time for all of the access endpoints on AWS Managed Blockchain, and demonstrated the utilization of SGX-based smart contracts for data sharing and analysis.
more »
« less
- PAR ID:
- 10356067
- Editor(s):
- Irfan Awan; Muhammad Younas; Jamal Bentahar; Salima Benbernou
- Date Published:
- Journal Name:
- Lecture notes in networks and systems
- Volume:
- 541
- ISSN:
- 2367-3370
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The healthcare sector is constantly improving patient health record systems. However, these systems face a significant challenge when confronted with patient health record (PHR) data due to its sensitivity. In addition, patientβs data is stored and spread generally across various healthcare facilities and among providers. This arrangement of distributed data becomes problematic whenever patients want to access their health records and then share them with their care provider, which yields a lack of interoperability among various healthcare systems. Moreover, most patient health record systems adopt a centralized management structure and deploy PHRs to the cloud, which raises privacy concerns when sharing patient information over a network. Therefore, it is vital to design a framework that considers patient privacy and data security when sharing sensitive information with healthcare facilities and providers. This paper proposes a blockchain framework for secured patient health records sharing that allows patients to have full access and control over their health records. With this novel approach, our framework applies the Ethereum blockchain smart contracts, the Inter-Planetary File System (IPFS) as an off-chain storage system, and the NuCypher protocol, which functions as key management and blockchain-based proxy re-encryption to create a secured on-demand patient health records sharing system effectively. Results show that the proposed framework is more secure than other schemes, and the PHRs will not be accessible to unauthorized providers or users. In addition, all encrypted data will only be accessible to and readable by verified entities set by the patient.more » « less
-
The emergence of blockchains and smart contracts have renewed interest in electrical cyber-physical systems, especially in the area of transactive energy systems. However, despite recent advances, there remain significant challenges that impede the practical adoption of blockchains in transactive energy systems, which include implementing complex market mechanisms in smart contracts, ensuring safety of the power system, and protecting residential consumersβ privacy. To address these challenges, we present TRANSAX, a blockchain-based transactive energy system that provides an efficient, safe, and privacy-preserving market built on smart contracts. Implementation and deployment of TRANSAX in a verifiably correct and efficient way is based on VeriSolid, a framework for the correct-by-construction development of smart contracts, and RIAPS, a middleware for resilient distributed power systemsmore » « less
-
An essential requirement of any information management system is to protect data and resources against breach or improper modifications, while at the same time ensuring data access to legitimate users. Systems handling personal data are mandated to track its flow to comply with data protection regulations. We have built a novel framework that integrates semantically rich data privacy knowledge graph with Hyperledger Fabric blockchain technology, to develop an automated access-control and audit mechanism that enforces users' data privacy policies while sharing their data with third parties. Our blockchain based data-sharing solution addresses two of the most critical challenges: transaction verification and permissioned data obfuscation. Our solution ensures accountability for data sharing in the cloud by incorporating a secure and efficient system for End-to-End provenance. In this paper, we describe this framework along with the comprehensive semantically rich knowledge graph that we have developed to capture rules embedded in data privacy policy documents. Our framework can be used by organizations to automate compliance of their Cloud datasets.more » « less
-
Due to the proliferation of IoT and the popularity of smart contracts mediated by blockchain, smart home systems have become capable of providing privacy and security to their occupants. In blockchain-based home automation systems, business logic is handled by smart contracts securely. However, a blockchain-based solution is inherently resource-intensive, making it unsuitable for resource-constrained IoT devices. Moreover, time-sensitive actions are complex to perform in a blockchainbased solution due to the time required to mine a block. In this work, we propose a blockchain-independent smart contract infrastructure suitable for resource-constrained IoT devices. Our proposed method is also capable of executing time-sensitive business logic. As an example of an end-to-end application, we describe a smart camera system using our proposed method, compare this system with an existing blockchain-based solution, and present an empirical evaluation of their performance.more » « less