skip to main content


Title: Apply Trust Computing and Privacy Preserving Smart Contracts to Manage, Share, and Analyze Multi-site Clinical Trial Data
Multi-site clinical trial systems face security challenges when streamlining information sharing while protecting patient privacy. In addition, patient enrollment, transparency, traceability, data integrity, and reporting in clinical trial systems are all critical aspects of maintaining data compliance. A Blockchain-based clinical trial framework has been proposed by lots of researchers and industrial companies recently, but its limitations of lack of data governance, limited confidentiality, and high communication overhead made data-sharing systems insecure and not efficient. We propose π–²π—ˆπ—π–Ύπ—‹π—‚π–Ί, a privacy-preserving smart contracts framework, to manage, share and analyze clinical trial data on fabric private chaincode (FPC). Compared to public Blockchain, fabric has fewer participants with an efficient consensus protocol. π–²π—ˆπ—π–Ύπ—‹π—‚π–Ί consists of several modules: patient consent and clinical trial approval management chaincode, secure execution for confidential data sharing, API Gateway, and decentralized data governance with adaptive threshold signature (ATS). We implemented two versions of π–²π—ˆπ—π–Ύπ—‹π—‚π–Ί with non-SGX deploys on AWS blockchain and SGX-based on a local data center. We evaluated the response time for all of the access endpoints on AWS Managed Blockchain, and demonstrated the utilization of SGX-based smart contracts for data sharing and analysis.  more » « less
Award ID(s):
1919159 2051800
NSF-PAR ID:
10356067
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Irfan Awan; Muhammad Younas; Jamal Bentahar; Salima Benbernou
Date Published:
Journal Name:
Lecture notes in networks and systems
Volume:
541
ISSN:
2367-3370
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The healthcare sector is constantly improving patient health record systems. However, these systems face a significant challenge when confronted with patient health record (PHR) data due to its sensitivity. In addition, patient’s data is stored and spread generally across various healthcare facilities and among providers. This arrangement of distributed data becomes problematic whenever patients want to access their health records and then share them with their care provider, which yields a lack of interoperability among various healthcare systems. Moreover, most patient health record systems adopt a centralized management structure and deploy PHRs to the cloud, which raises privacy concerns when sharing patient information over a network. Therefore, it is vital to design a framework that considers patient privacy and data security when sharing sensitive information with healthcare facilities and providers. This paper proposes a blockchain framework for secured patient health records sharing that allows patients to have full access and control over their health records. With this novel approach, our framework applies the Ethereum blockchain smart contracts, the Inter-Planetary File System (IPFS) as an off-chain storage system, and the NuCypher protocol, which functions as key management and blockchain-based proxy re-encryption to create a secured on-demand patient health records sharing system effectively. Results show that the proposed framework is more secure than other schemes, and the PHRs will not be accessible to unauthorized providers or users. In addition, all encrypted data will only be accessible to and readable by verified entities set by the patient. 
    more » « less
  2. In the era of cloud computing and big data analysis, how to efficiently share and utilize medical information scattered across various care providers has become a critical problem. This paper proposes a new framework for sharing medical data in a secure and privacy-preserving way. This framework holistically integrates multi-authority attribute based encryption, blockchain and smart contract, as well as software defined networking to define and enforce sharing policies. Specifically in our framework, patients' medical records are encrypted and stored in hospital databases, where strict access controls are enforced with attribute based encryption coupled with privacy level classification. Our framework leverages blockchain technology to connect scattered private databases from participating hospitals for efficient and secure data provision, smart contracts to enable the business logic of clinical data usage, and software defined networking to revoke sharing privileges. The performance evaluation of our prototype demonstrates that the associated computation costs are reasonable in practice. 
    more » « less
  3. The rapid development of three-dimensional (3D) acquisition technology based on 3D sensors provides a large volume of data, which are often represented in the form of point clouds. Point cloud representation can preserve the original geometric information along with associated attributes in a 3D space. Therefore, it has been widely adopted in many scene-understanding-related applications such as virtual reality (VR) and autonomous driving. However, the massive amount of point cloud data aggregated from distributed 3D sensors also poses challenges for secure data collection, management, storage, and sharing. Thanks to the characteristics of decentralization and security, Blockchain has great potential to improve point cloud services and enhance security and privacy preservation. Inspired by the rationales behind the software-defined network (SDN) technology, this paper envisions SAUSA, a Blockchain-based authentication network that is capable of recording, tracking, and auditing the access, usage, and storage of 3D point cloud datasets in their life-cycle in a decentralized manner. SAUSA adopts an SDN-inspired point cloud service architecture, which allows for efficient data processing and delivery to satisfy diverse quality-of-service (QoS) requirements. A Blockchain-based authentication framework is proposed to ensure security and privacy preservation in point cloud data acquisition, storage, and analytics. Leveraging smart contracts for digitizing access control policies and point cloud data on the Blockchain, data owners have full control of their 3D sensors and point clouds. In addition, anyone can verify the authenticity and integrity of point clouds in use without relying on a third party. Moreover, SAUSA integrates a decentralized storage platform to store encrypted point clouds while recording references of raw data on the distributed ledger. Such a hybrid on-chain and off-chain storage strategy not only improves robustness and availability, but also ensures privacy preservation for sensitive information in point cloud applications. A proof-of-concept prototype is implemented and tested on a physical network. The experimental evaluation validates the feasibility and effectiveness of the proposed SAUSA solution. 
    more » « less
  4. Traditionally, spectrum allocation has been governed by centralized schemes (e.g., command-and-control). Nonetheless, other mechanisms, such as collaborative enforcement, have proven to be successful in a variety of scenarios. In Collaborative enforcement (i.e., collective action), the stakeholders agree on decision-making arrangements (i.e., access, allocation, and control of the resources) while being involved in monitoring the adherence to the rules as a shared effort. Blockchain is a distributed ledger of records/transactions (i.e., database) that brings many benefits such as decentralization, transparency, immutability, etc. One of the most notable characteristics of blockchain-based platforms is their definition as trust-less environments, as there is no central entity in charge of controlling the network interactions. Instead, trust is a group effort, achieved through repeated interactions, consensus algorithms, and cryptographic tools; therefore, converting blockchain systems into examples of collaborative governance regimes. In this paper, our goal is to analyze a particular application of blockchain and smart contracts for the 1695-1710MHz sharing scenario. In this way, we provide a theoretical analysis of the feasibility and the required characteristics to implement such a system. In addition, through the implementation of a Proof of Concept, we explore how the implementation of a blockchainbased organization can be the motor to build a collaborative governance scheme in the spectrum sharing arrangement of the 1695-1710MHz band 
    more » « less
  5. An essential requirement of any information management system is to protect data and resources against breach or improper modifications, while at the same time ensuring data access to legitimate users. Systems handling personal data are mandated to track its flow to comply with data protection regulations. We have built a novel framework that integrates semantically rich data privacy knowledge graph with Hyperledger Fabric blockchain technology, to develop an automated access-control and audit mechanism that enforces users' data privacy policies while sharing their data with third parties. Our blockchain based data-sharing solution addresses two of the most critical challenges: transaction verification and permissioned data obfuscation. Our solution ensures accountability for data sharing in the cloud by incorporating a secure and efficient system for End-to-End provenance. In this paper, we describe this framework along with the comprehensive semantically rich knowledge graph that we have developed to capture rules embedded in data privacy policy documents. Our framework can be used by organizations to automate compliance of their Cloud datasets. 
    more » « less