Intrinsic image decomposition and inverse rendering are long-standing problems in computer vision. To evaluate albedo recovery, most algorithms report their quantitative performance with a mean Weighted Human Disagreement Rate (WHDR) metric on the IIW dataset. However, WHDR focuses only on relative albedo values and often fails to capture overall quality of the albedo. In order to comprehensively evaluate albedo, we collect a new dataset, Measured Albedo in the Wild (MAW), and propose three new metrics that complement WHDR: intensity, chromaticity and texture metrics. We show that existing algorithms often improve WHDR metric but perform poorly on other metrics. We then finetune different algorithms on our MAW dataset to significantly improve the quality of the reconstructed albedo both quantitatively and qualitatively. Since the proposed intensity, chromaticity, and texture metrics and the WHDR are all complementary we further introduce a relative performance measure that captures average performance. By analysing existing algorithms we show that there is significant room for improvement. Our dataset and evaluation metrics will enable researchers to develop algorithms that improve albedo reconstruction. Code and Data available at: https://measuredalbedo.github.io/ 
                        more » 
                        « less   
                    
                            
                            An Evaluative Measure of Clustering Methods Incorporating Hyperparameter Sensitivity
                        
                    
    
            Clustering algorithms are often evaluated using metrics which compare with ground-truth cluster assignments, such as Rand index and NMI. Algorithm performance may vary widely for different hyperparameters, however, and thus model selection based on optimal performance for these metrics is discordant with how these algorithms are applied in practice, where labels are unavailable and tuning is often more art than science. It is therefore desirable to compare clustering algorithms not only on their optimally tuned performance, but also some notion of how realistic it would be to obtain this performance in practice. We propose an evaluation of clustering methods capturing this ease-of-tuning by modeling the expected best clustering score under a given computation budget. To encourage the adoption of the proposed metric alongside classic clustering evaluations, we provide an extensible benchmarking framework. We perform an extensive empirical evaluation of our proposed metric on popular clustering algorithms over a large collection of datasets from different domains, and observe that our new metric leads to several noteworthy observations. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10356094
- Date Published:
- Journal Name:
- Proceedings of the AAAI Conference on Artificial Intelligence
- Volume:
- 36
- Issue:
- 7
- ISSN:
- 2159-5399
- Page Range / eLocation ID:
- 7788 to 7796
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Algorithms often have tunable parameters that impact performance metrics such as runtime and solution quality. For many algorithms used in practice, no parameter settings admit meaningful worst-case bounds, so the parameters are made available for the user to tune. Alternatively, parameters may be tuned implicitly within the proof of a worst-case approximation ratio or runtime bound. Worst-case instances, however, may be rare or nonexistent in practice. A growing body of research has demonstrated that a data-driven approach to parameter tuning can lead to significant improvements in performance. This approach uses atraining setof problem instances sampled from an unknown, application-specific distribution and returns a parameter setting with strong average performance on the training set. We provide techniques for derivinggeneralization guaranteesthat bound the difference between the algorithm’s average performance over the training set and its expected performance on the unknown distribution. Our results apply no matter how the parameters are tuned, be it via an automated or manual approach. The challenge is that for many types of algorithms, performance is a volatile function of the parameters: slightly perturbing the parameters can cause a large change in behavior. Prior research [e.g.,12,16,20,62] has proved generalization bounds by employing case-by-case analyses of greedy algorithms, clustering algorithms, integer programming algorithms, and selling mechanisms. We streamline these analyses with a general theorem that applies whenever an algorithm’s performance is a piecewise-constant, piecewise-linear, or—more generally—piecewise-structuredfunction of its parameters. Our results, which are tight up to logarithmic factors in the worst case, also imply novel bounds for configuring dynamic programming algorithms from computational biology.more » « less
- 
            null (Ed.)Recommendation and ranking systems are known to suffer from popularity bias; the tendency of the algorithm to favor a few popular items while under-representing the majority of other items. Prior research has examined various approaches for mitigating popularity bias and enhancing the recommendation of long-tail, less popular, items. The effectiveness of these approaches is often assessed using different metrics to evaluate the extent to which over-concentration on popular items is reduced. However, not much attention has been given to the user-centered evaluation of this bias; how different users with different levels of interest towards popular items are affected by such algorithms. In this paper, we show the limitations of the existing metrics to evaluate popularity bias mitigation when we want to assess these algorithms from the users’ perspective and we propose a new metric that can address these limitations. In addition, we present an effective approach that mitigates popularity bias from the user-centered point of view. Finally, we investigate several state-of-the-art approaches proposed in recent years to mitigate popularity bias and evaluate their performances using the existing metrics and also from the users’ perspective. Our experimental results using two publicly-available datasets show that existing popularity bias mitigation techniques ignore the users’ tolerance towards popular items. Our proposed user-centered method can tackle popularity bias effectively for different users while also improving the existing metrics.more » « less
- 
            Abstract Statistical relational learning (SRL) frameworks are effective at defining probabilistic models over complex relational data. They often use weighted first-order logical rules where the weights of the rules govern probabilistic interactions and are usually learned from data. Existing weight learning approaches typically attempt to learn a set of weights that maximizes some function of data likelihood; however, this does not always translate to optimal performance on a desired domain metric, such as accuracy or F1 score. In this paper, we introduce a taxonomy of search-based weight learning approaches for SRL frameworks that directly optimize weights on a chosen domain performance metric. To effectively apply these search-based approaches, we introduce a novel projection, referred to as scaled space (SS), that is an accurate representation of the true weight space. We show that SS removes redundancies in the weight space and captures the semantic distance between the possible weight configurations. In order to improve the efficiency of search, we also introduce an approximation of SS which simplifies the process of sampling weight configurations. We demonstrate these approaches on two state-of-the-art SRL frameworks: Markov logic networks and probabilistic soft logic. We perform empirical evaluation on five real-world datasets and evaluate them each on two different metrics. We also compare them against four other weight learning approaches. Our experimental results show that our proposed search-based approaches outperform likelihood-based approaches and yield up to a 10% improvement across a variety of performance metrics. Further, we perform an extensive evaluation to measure the robustness of our approach to different initializations and hyperparameters. The results indicate that our approach is both accurate and robust.more » « less
- 
            null (Ed.)Although we have seen a proliferation of algorithms for recommending visualizations, these algorithms are rarely compared with one another, making it difficult to ascertain which algorithm is best for a given visual analysis scenario. Though several formal frameworks have been proposed in response, we believe this issue persists because visualization recommendation algorithms are inadequately specified from an evaluation perspective. In this paper, we propose an evaluation-focused framework to contextualize and compare a broad range of visualization recommendation algorithms. We present the structure of our framework, where algorithms are specified using three components: (1) a graph representing the full space of possible visualization designs, (2) the method used to traverse the graph for potential candidates for recommendation, and (3) an oracle used to rank candidate designs. To demonstrate how our framework guides the formal comparison of algorithmic performance, we not only theoretically compare five existing representative recommendation algorithms, but also empirically compare four new algorithms generated based on our findings from the theoretical comparison. Our results show that these algorithms behave similarly in terms of user performance, highlighting the need for more rigorous formal comparisons of recommendation algorithms to further clarify their benefits in various analysis scenarios.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    