skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: World Atlas of late Quaternary Foraminiferal Oxygen and Carbon Isotope Ratios (WA_Foraminiferal_Isotopes_2022)
The atlas contains a collection of 2,106 published and previously unpublished downcore stable isotope records of various planktonic and benthic species of foraminifera from 1,265 globally distributed sediment cores. Uncalibrated radiocarbon dates are provided for 598 cores in the collection. Each stable isotope and radiocarbon series is stored in a separate netCDF file containing fundamental meta data as attributes. The data set can be further explored and analyzed with the free software tool PaleoDataView (Langner, M. and Mulitza, S.: Clim. Past, 15, 2067–2072, https://doi.org/10.5194/cp-15-2067-2019). WA_Foraminiferal_Isotopes_2022.zip contains 2006 stable isotope records (in netCDF format) and 598 radiocarbon records (in netCDF format). The folder structure in the file should be preserved and is required to use the collection with the software PaleoDataView.  more » « less
Award ID(s):
2103032 1924215
PAR ID:
10356097
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; « less
Publisher / Repository:
PANGAEA - Data Publisher for Earth & Environmental Science
Date Published:
Subject(s) / Keyword(s):
carbon isotopes foraminifera oxygen isotopes PaleoDataView radiocarbon PAGES - OC3 - Ocean Circulation and Carbon Cycling (PAGES_OC3) Paleo Modelling (PalMod)
Format(s):
Medium: X Size: 4.8 MBytes Other: application/zip
Size(s):
4.8 MBytes
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. We present a global atlas of downcore foraminiferal oxygen and carbon isotope ratios available at https://doi.org/10.1594/PANGAEA.936747(Mulitza et al., 2021a). The database contains 2106 published and previously unpublished stable isotope downcore records with 361 949 stable isotopevalues of various planktic and benthic species of Foraminifera from 1265 sediment cores. Age constraints are provided by 6153 uncalibratedradiocarbon ages from 598 (47 %) of the cores. Each stable isotope and radiocarbon series is provided in a separate netCDF file containingfundamental metadata as attributes. The data set can be managed and explored with the free software tool PaleoDataView. The atlas will provideimportant data for paleoceanographic analyses and compilations, site surveys, or for teaching marine stratigraphy. The database can be updated withnew records as they are generated, providing a live ongoing resource into the future. 
    more » « less
  2. This archive contains the climate reconstruction of South American summer monsoon over 850–1850 CE at 5-year resolution by combining the isotope-enabled Community Earth System Model with isotopic proxy records through data assimilation. For a complete description of the experimental design, see the associated publication. Each NetCDF file corresponds to one variable. For each variable, along with the reconstruction, an estimation of the uncertainty is provided. All fields are anomalies relative to the 850–1850 CE period. 
    more » « less
  3. A robust chronology has been developed for the Denali Ice Cores, Begguya, Alaska (62.93 N 151.083 W, 3912 m asl (meters above sea level); also known as Mount Hunter) using a combination of techniques including annual‑layer counting, volcanics, radiocarbon dating, and the 1963 atmospheric nuclear‑weapons‑testing horizon. Radiocarbon dating confirms that there is early Holocene ice preserved at the bottom of the Denali Ice Cores. To confirm this, researchers at the University of Maine have produced oxygen‑isotope records. Examining the data from the twin cores, we see replicate isotope profiles in the bottom 8 meters of ice, showing a sharp decrease of δ^18O (oxygen‑18 isotope ratio) of nearly 6 ‰ (permil) near the bottom. To investigate whether this decrease is a climate signal or an artifact of basal‑ice dynamics, we collected trace‑element data across the oxygen‑isotope decrease. Because the basal ice of the Denali Ice Cores contains too high a sediment load to be melted and analyzed with aqueous inductively coupled plasma mass spectrometry (ICP‑MS), we analyzed Na (sodium), Mg (magnesium), Cu (copper), Pb (lead), Al (aluminum), Ca (calcium), Fe (iron), and S (sulfur) in the basal ice (207.35 m to 208.76 m depth) using laser‑ablation inductively coupled plasma mass spectrometry (LA‑ICP‑MS). The data are still being analyzed and compared with data from other methods to determine the cause of the oxygen‑isotope‑signal decrease. Researchers seeking to use this dataset should proceed with caution, as there is some evidence of contamination in the Pb and Cu analyses. 
    more » « less
  4. The radon isotope and stable water isotope data for Coal Creek Watershed, Colorado, consists of d2H, d18O, and 222Rn values from samples collected at 8 stream location along Coal Creek, samples from 7 groundwater springs within the watershed, and precipitation isotope samples collected by Next Generation Water Observing System (NGWOS) from a collector within the watershed. All stream and spring samples were collected between June and October, 2021, and precipitation isotope samples were collected between November 2020 and September 2021. These data were collected to evaluate how groundwater contributions to Coal Creek originating from a fractured hillslope and alluvial fan respond to summer monsoon rains and seasonal drying. Understanding of groundwater-surface water interactions in montane systems in critical for the future of water availability in the Western US as groundwater contributions are expected to become more important for sustaining summer stream flows. This data package contains: (1) a csv of all radon samples; (2) a csv of all stream and spring isotope samples; (3) a csv of precipitation isotope samples; and (4) a csv of locations for each sampling site. The dataset additionally includes a file-level metadata (flmd.csv) file that lists each file contained in the dataset with associated metadata; and a data dictionary (dd.csv) file that contains column/row headers used throughout the files along with a definition, units, and data type. 
    more » « less
  5. Abstract. The response of the hydrological cycle to anthropogenic climatechange, especially across the tropical oceans, remains poorly understood due to the scarcity of long instrumental temperature and hydrological records. Massive shallow-water corals are ideally suited to reconstructing past oceanic variability as they are widely distributed across the tropics,rapidly deposit calcium carbonate skeletons that continuously record ambient environmental conditions, and can be sampled at monthly to annualresolution. Climate reconstructions based on corals primarily use the stable oxygen isotope composition (δ18O), which acts as a proxy for sea surface temperature (SST), and the oxygen isotope composition ofseawater (δ18Osw), a measure of hydrological variability. Increasingly, coral δ18O time series are paired with time series of strontium-to-calcium ratios (Sr/Ca), a proxy for SST, from the same coral to quantify temperature and δ18Osw variabilitythrough time. To increase the utility of such reconstructions, we presentthe CoralHydro2k database, a compilation of published, peer-reviewed coral Sr/Ca and δ18O records from the Common Era (CE). The database contains 54 paired Sr/Ca–δ18O records and 125 unpaired Sr/Ca or δ18O records, with 88 % of these records providing data coverage from 1800 CE to the present. A quality-controlled set of metadata with standardized vocabulary and units accompanies each record, informing the useof the database. The CoralHydro2k database tracks large-scale temperatureand hydrological variability. As such, it is well-suited for investigationsof past climate variability, comparisons with climate model simulationsincluding isotope-enabled models, and application in paleodata-assimilation projects. The CoralHydro2k database is available in Linked Paleo Data (LiPD) format with serializations in MATLAB, R, and Python and can be downloaded from the NOAA National Center for Environmental Information's Paleoclimate Data Archive at https://doi.org/10.25921/yp94-v135 (Walter et al., 2022). 
    more » « less