skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Brief overview of recently reported misassigned natural products and their in silico revisions enabled by DU8ML, a machine learning-augmented DFT computational NMR method
Mostly covering 2018 to 2022 This article describes a personal selection of recent misassigned structures of natural products and their revision with the aid of DU8ML, a machine learning-augmented DFT computational method for fast and accurate calculations of solution NMR chemical shifts and spin–spin coupling constants.  more » « less
Award ID(s):
1955892
PAR ID:
10356125
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Natural Product Reports
ISSN:
0265-0568
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We investigate a model of electrons with random and all-to-all hopping and spin exchange interactions, with a constraint of no double occupancy. The model is studied in a Sachdev–Ye–Kitaev-like large-Mlimit with SU(M) spin symmetry. The saddle-point equations of this model are similar to approximate dynamic mean-field equations of realistic, nonrandom,t-Jmodels. We use numerical studies on both real and imaginary frequency axes, along with asymptotic analyses, to establish the existence of a critical non–Fermi-liquid metallic ground state at large doping, with the spin correlation exponent varying with doping. This critical solution possesses a time-reparameterization symmetry, akin to Sachdev–Ye–Kitaev (SYK) models, which contributes a linear-in-temperature resistivity over the full range of doping where the solution is present. It is therefore an attractive mean-field description of the overdoped region of cuprates, where experiments have observed a linear-Tresistivity in a broad region. The critical metal also displays a strong particle–hole asymmetry, which is relevant to Seebeck coefficient measurements. We show that the critical metal has an instability to a low-doping spin-glass phase and compute a critical doping value. We also describe the properties of this metallic spin-glass phase. 
    more » « less
  2. High-spin ground-state polyradicals are an important platform due to their potential applications in magnetic and spintronic devices. However, a low high-to-low spin energy gap limits the population of the high-spin state, precluding their application at room temperature. Also, design strategies delineating control of the ground electronic state from a closed-shell low-spin to open-shell polyradical character with a high-spin ground state are not well established. Here, we report indacenodinaphthothiophene isomers fused with a 6,6-dicyanofulvene group showing a high-spin quintet ground state. Density functional theory calculations indicate that the syn - and anti -configurations have a closed-shell low-spin singlet ground state. However, the linear -configuration displays a high-spin quintet ground state, with the energy difference between the high-spin quintet to the nearest low-spin excited states calculated to be as large as 0.24 eV (≈5.60 kcal mol −1 ), exhibiting an exclusive population of the high-spin quintet state at room temperature. These molecules are compelling synthetic targets for use in magnetic and spintronic applications. 
    more » « less
  3. Long-range and anisotropic dipolar interactions profoundly modify the dynamics of particles hopping in a periodic lattice potential. We report the realization of a generalizedt-Jmodel with dipolar interactions using a system of ultracold fermionic molecules with spin encoded in the two lowest rotational states. We independently tuned the dipolar Ising and spin-exchange couplings and the molecular motion and studied their interplay on coherent spin dynamics. Using Ramsey spectroscopy, we observed and modeled interaction-driven contrast decay that depends strongly both on the strength of the anisotropy between Ising and spin-exchange couplings and on motion. This study paves the way for future exploration of kinetic spin dynamics and quantum magnetism with highly tunable molecular platforms in regimes that are challenging for existing numerical and analytical methods. 
    more » « less
  4. Co-crystallization of the prominent Fe( ii ) spin-crossover (SCO) cation, [Fe(3-bpp) 2 ] 2+ (3-bpp = 2,6-bis(pyrazol-3-yl)pyridine), with a fractionally charged TCNQ δ − radical anion has afforded a hybrid complex [Fe(3-bpp) 2 ](TCNQ) 3 ·5MeCN (1·5MeCN, where δ = −0.67). The partially desolvated material shows semiconducting behavior, with the room temperature conductivity σ RT = 3.1 × 10 −3 S cm −1 , and weak modulation of conducting properties in the region of the spin transition. The complete desolvation, however, results in the loss of hysteretic behavior and a very gradual SCO that spans the temperature range of 200 K. A related complex with integer-charged TCNQ − anions, [Fe(3-bpp) 2 ](TCNQ) 2 ·3MeCN (2·3MeCN), readily loses the interstitial solvent to afford desolvated complex 2 that undergoes an abrupt and hysteretic spin transition centered at 106 K, with an 11 K thermal hysteresis. Complex 2 also exhibits a temperature-induced excited spin-state trapping (TIESST) effect, upon which a metastable high-spin state is trapped by flash-cooling from room temperature to 10 K. Heating above 85 K restores the ground-state low-spin configuration. An approach to improve the structural stability of such complexes is demonstrated by using a related ligand 2,6-bis(benzimidazol-2′-yl)pyridine (bzimpy) to obtain [Fe(bzimpy) 2 ](TCNQ) 6 ·2Me 2 CO (4) and [Fe(bzimpy) 2 ](TCNQ) 5 ·5MeCN (5), both of which exist as LS complexes up to 400 K and exhibit semiconducting behavior, with σ RT = 9.1 × 10 −2 S cm −1 and 1.8 × 10 −3 S cm −1 , respectively. 
    more » « less
  5. Abstract Spin waves, quantized as magnons, have low energy loss and magnetic damping, which are critical for devices based on spin‐wave propagation needed for information processing devices. The organic‐based magnet [V(TCNE)x; TCNE = tetracyanoethylene;x≈ 2] has shown an extremely low magnetic damping comparable to, for example, yttrium iron garnet (YIG). The excitation, detection, and utilization of coherent and non‐coherent spin waves on various modes in V(TCNE)xis demonstrated and show that the angular momentum carried by microwave‐excited coherent spin waves in a V(TCNE)xfilm can be transferred into an adjacent Pt layer via spin pumping and detected using the inverse spin Hall effect. The spin pumping efficiency can be tuned by choosing different excited spin wave modes in the V(TCNE)xfilm. In addition, it is shown that non‐coherent spin waves in a V(TCNE)xfilm, excited thermally via the spin Seebeck effect, can also be used as spin pumping source that generates an electrical signal in Pt with a sign change in accordance with the magnetization switching of the V(TCNE)x. Combining coherent and non‐coherent spin wave detection, the spin pumping efficiency can be thermally controlled, and new insight is gained for the spintronic applications of spin wave modes in organic‐based magnets. 
    more » « less