skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Critical metallic phase in the overdoped random t - J model
We investigate a model of electrons with random and all-to-all hopping and spin exchange interactions, with a constraint of no double occupancy. The model is studied in a Sachdev–Ye–Kitaev-like large-Mlimit with SU(M) spin symmetry. The saddle-point equations of this model are similar to approximate dynamic mean-field equations of realistic, nonrandom,t-Jmodels. We use numerical studies on both real and imaginary frequency axes, along with asymptotic analyses, to establish the existence of a critical non–Fermi-liquid metallic ground state at large doping, with the spin correlation exponent varying with doping. This critical solution possesses a time-reparameterization symmetry, akin to Sachdev–Ye–Kitaev (SYK) models, which contributes a linear-in-temperature resistivity over the full range of doping where the solution is present. It is therefore an attractive mean-field description of the overdoped region of cuprates, where experiments have observed a linear-Tresistivity in a broad region. The critical metal also displays a strong particle–hole asymmetry, which is relevant to Seebeck coefficient measurements. We show that the critical metal has an instability to a low-doping spin-glass phase and compute a critical doping value. We also describe the properties of this metallic spin-glass phase.  more » « less
Award ID(s):
2002850
PAR ID:
10482006
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
119
Issue:
29
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The strange metal phase of correlated electrons materials was described in a recent theory by a model of a Fermi surface coupled a two-dimensional quantum critical bosonic field with a spatially random Yukawa coupling. With the assumption of self-averaging randomness, similar to that in the Sachdev–Ye–Kitaev model, numerous observed properties of a strange metal were obtained for a wide range of intermediate temperatures, including the linear in temperature resistivity. The Harris criterion implies that spatial fluctuations in the local position of the critical point must dominate at lower temperatures. For an M -component boson with M 2 , we use multiple graphics processing units (GPUs) to compute the real frequency spectrum of the boson propagator in a self-consistent mean-field treatment of the boson self-interactions, but an exact treatment of multiple realizations of the spatial randomness from the random boson mass. We find that Landau damping from the fermions leads to the emergence of the physics of the random transverse-field Ising model at low temperatures, as has been proposed by Hoyos, Kotabage, and Vojta. This regime is controlled by localized overdamped eigenmodes of the bosonic scalar field, also has a resistivity which is nearly linear-in-temperature, and extends into a “quantum critical phase” away from the quantum critical point, as observed in several cuprates. For the M = 1 Ising scalar, the mean-field treatment is not applicable, and so we use Hybrid Monte Carlo simulations running on multiple GPUs; we find a rounded transition and localization physics, with strange metal behavior in an extended region around the transition. 
    more » « less
  2. The Sachdev-Ye-Kitaev model provides a solvable theory of entangled many-particle quantum states without quasiparticle excitations. I will describe how its solution has led to an understanding of the universal structure of the low energy density of states of charged black holes, and to realistic and universal models of strange metals. 
    more » « less
  3. A bstract We study $$ \mathcal{N} $$ N = 2 supersymmetric Sachdev-Ye-Kitaev (SYK) models with com- plex fermions at non-zero background charge. Motivated by multi-charge supersymmetric black holes, we propose a new $$ \mathcal{N} $$ N = 2 SYK model with multiple U (1) symmetries, integer charges, and a non-vanishing supersymmetric index, realizing features not present in known SYK models. In both models, a conformal solution with a super-Schwarzian mode emerges at low temperatures, signalling the appearance of nearly AdS 2 /BPS physics. However, in contrast to complex SYK, the fermion scaling dimension depends on the background charge in the conformal limit. For a critical charge, we find a high to low entropy phase transition in which the conformal solution ceases to be valid. This transition has a simple interpretation– the fermion scaling dimension violates the unitarity bound. We offer some comments on a holographic interpretation for supersymmetric black holes. 
    more » « less
  4. A<sc>bstract</sc> We investigate the spectral form factor of the sparse Sachdev-Ye-Kitaev model. We use numerical methods to establish that at intermediate times the connected part of the spectral form factor is the dominant one. These connected contributions arise from fluctuations around the disconnected geometry, not from a new saddle point. A similar effect was previously conjectured in SYK but required a value ofNout of reach of current numerical simulations. 
    more » « less
  5. null (Ed.)
    In this paper, we study non-equilibrium dynamics induced by a sudden quench of strongly correlated Hamiltonians with all-to-all interactions. By relying on a Sachdev-Ye-Kitaev (SYK)-based quench protocol, we show that the time evolution of simple spin-spin correlation functions is highly sensitive to the degree of k-locality of the corresponding operators, once an appropriate set of fundamental fields is identified. By tracking the time-evolution of specific spin-spin correlation functions and their decay, we argue that it is possible to distinguish between operator-hopping and operator growth dynamics; the latter being a hallmark of quantum chaos in many-body quantum systems. Such an observation, in turn, could constitute a promising tool to probe the emergence of chaotic behavior, rather accessible in state-of-the-art quench setups. 
    more » « less