skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Improving Wikidata with Student-Generated Concept Maps
Wikidata is a publicly available, crowdsourced knowledge base that contains interlinked concepts structured for use by intelligent systems. While Wikidata has experienced rapid growth, it is far from complete and faces challenges that prevent it from being used to its full potential. In this paper, we propose a novel method for improving Wikidata by engaging undergraduate students to contribute previously missing knowledge via concept mapping assignments. Rather than allow students to edit Wikidata directly, we describe a workflow in which knowledge is constructed by students and then reviewed by an expert. We present a case study in which we deployed a workflow in a large undergraduate course about sustainability, and find that it was able to contribute a substantial number of high quality statements that persisted in and contributed previously missing knowledge to Wikidata. This work provides a preliminary workflow for improving Wikidata based on classroom assignments, as well as recommendations for how future educational projects could continue to improve Wikidata or other public knowledge bases.  more » « less
Award ID(s):
2121572
PAR ID:
10356169
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the International AAAI Conference on Web and Social Media (ICWSM 22)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This innovative practice WIP paper describes our ongoing development and deployment of an online robotics education platform that highlighted a gap in providing an interactive, feedback-rich learning environment essential for mastering pro-gramming concepts in robotics, which they were not getting with the traditional code→ simulate→turn-in workflow. Since teaching resources are limited, students would benefit from feedback in real-time to find and fix their mistakes in the programming assignments. To integrate such automated feedback, this paper will focus on creating a system for unit testing while integrating it into the course workflow. We facilitate this real-time feedback by including unit testing in the design of programming assignments so students can understand and fix their errors on their own and without the prior help of instructors/TAs serving as a bottleneck. In line with the framework's personalized student-centered approach, this method makes it easier for students to revise and debug their programming work, encouraging hands-on learning. The updated course workflow, which includes unit tests, will strengthen the learning environment and make it more interactive so that students can learn how to program robots in a self-guided fashion. 
    more » « less
  2. null (Ed.)
    The number of undergraduate researchers interested in pursuing neurophysiological research exceeds the research laboratory positions and hands-on course experiences available because these types of experiments often require extensive experience or expensive equipment. In contrast, genetic and molecular tools can more easily incorporate undergraduates with less time or training. With the explosion of newly sequenced genomes and transcriptomes, there is a large pool of untapped molecular and genetic information which would greatly inform neurophysiological processes. Classically trained neurophysiologists often struggle to make use of newly available genetic information for themselves and their trainees, despite the clear advantage of combining genetic and physiological techniques. This is particularly prevalent among researchers working with organisms that historically had no or only few genetic tools available. Combining these two fields will expose undergraduates to a greater variety of research approaches, concepts, and hands-on experiences. The goal of this manuscript is to provide an easily understandable and reproducible workflow that can be applied in both lab and classroom settings to identify genes involved in neuronal function. We outline clear learning objectives that can be acquired by following our workflow and assessed by peer-evaluation. Using our workflow, we identify and validate the sequence of two new Gamma Aminobutyric Acid A (GABAA) receptor subunit homologs in the recently published genome and transcriptome of the marbled crayfish, Procambarus virginalis. Altogether, this allows undergraduate students to apply their knowledge of the processes of gene expression to functional neuronal outcomes. It also provides them with opportunities to contribute significantly to physiological research, thereby exposing them to interdisciplinary approaches. 
    more » « less
  3. Open-ended assignments - such as lab reports and semester-long projects - provide data science and statistics students with opportunities for developing communication, critical thinking, and creativity skills. However, providing grades and qualitative feedback to open-ended assignments can be very time consuming and difficult to do consistently across students. In this paper, we discuss the steps of a typical grading workflow and highlight which steps can be automated in an approach that we define as an automated grading workflow. We illustrate how gradetools, a new R package, implements this approach within RStudio to facilitate efficient and consistent grading while providing individualized feedback. We hope that this work will help the community of data science and statistics educators use gradetools as their grading workflow assistant or develop their own tools for assisting their grading workflow. 
    more » « less
  4. University students have begun to use Artificial Intelligence (AI) in many different ways in their undergraduate education, some beneficial to their learning, and some simply expedient to completing assignments with as little work as possible. This exploratory qualitative study examines how undergraduate students used AI in a large General Education course on sustainability and technology at a research university in the United States in 2023. Thirty-nine students documented their use of AI in their final course project, which involved analyzing conceptual networks connecting core sustainability concepts. Through iterative qualitative coding, we identified key patterns in students’ AI use, including higher-order writing tasks (understanding complex topics, finding evidence), lower-order writing tasks (revising, editing, proofreading), and other learning activities (efficiency enhancement, independent research). Students primarily used AI to improve communication of their original ideas, though some leveraged it for more complex tasks like finding evidence and developing arguments. Many students expressed skepticism about AI-generated content and emphasized maintaining their intellectual independence. While some viewed AI as vital for improving their work, others explicitly distinguished between AI-assisted editing and their original thinking. This analysis provides insight into how students navigate AI use when it is explicitly permitted in coursework, with implications for effectively integrating AI into higher education to support student learning. 
    more » « less
  5. Structured data peer production (SDPP) platforms like Wikidata play an important role in knowledge production. Compared to traditional peer production platforms like Wikipedia, Wikidata data is more structured and intended to be used by machines, not (directly) by people; end-user interactions with Wikidata often happen through intermediary "invisible machines." Given this distinction, we wanted to understand Wikidata contributor motivations and how they are affected by usage invisibility caused by the machine intermediaries. Through an inductive thematic analysis of 15 interviews, we find that: (i) Wikidata editors take on two archetypes---Architects who define the ontological infrastructure of Wikidata, and Masons who build the database through data entry and editing; (ii) the structured nature of Wikidata reveals novel editor motivations, such as an innate drive for organizational work; (iii) most Wikidata editors have little understanding of how their contributions are used, which may demotivate some. We synthesize these insights to help guide the future design of SDPP platforms in supporting the engagement of different types of editors. 
    more » « less