skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Accelerating COVID-19 Research with Graph Mining and Transformer-Based Learning
In 2020, the White House released the “Call to Action to the Tech Community on New Machine Readable COVID-19 Dataset,” wherein artificial intelligence experts are asked to collect data and develop text mining techniques that can help the science community answer high-priority scientific questions related to COVID-19. The Allen Institute for AI and collaborators announced the availability of a rapidly growing open dataset of publications, the COVID-19 Open Research Dataset (CORD-19). As the pace of research accelerates, biomedical scientists struggle to stay current. To expedite their investigations, scientists leverage hypothesis generation systems, which can automatically inspect published papers to discover novel implicit connections. We present automated general purpose hypothesis generation systems AGATHA-C and AGATHA-GP for COVID-19 research. The systems are based on the graph mining and transformer models. The systems are massively validated using retrospective information rediscovery and proactive analysis involving human-in-the-loop expert analysis. Both systems achieve high-quality predictions across domains in fast computational time and are released to the broad scientific community to accelerate biomedical research. In addition, by performing the domain expert curated study, we show that the systems are able to discover ongoing research findings such as the relationship between COVID-19 and oxytocin hormone.All code, details, and pre-trained models are available at https://github.com/IlyaTyagin/AGATHA-C-GP.  more » « less
Award ID(s):
2127776
PAR ID:
10356191
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
36
Issue:
11
ISSN:
2159-5399
Page Range / eLocation ID:
12673 to 12679
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Medical research is risky and expensive. Drug discovery requires researchers to efficiently winnow thousands of potential targets to a small candidate set. However, scientists spend significant time and money long before seeing the intermediate results that ultimately determine this smaller set. Hypothesis generation systems address this challenge by mining the wealth of publicly available scientific information to predict plausible research directions.We present AGATHA, a deep-learning hypothesis generation system that learns a data-driven ranking criteria to recommend new biomedical connections. We massively validate our system with a temporal holdout wherein we predict connections first introduced after 2015 using data published beforehand. We additionally explore biomedical sub-domains, and demonstrate AGATHA’s predictive capacity across the twenty most popular relationship types. Furthermore, we perform an ablation study to examine the aspects of our semantic network that most contribute to recommendation quality. Overall, AGATHA achieves best-in-class recommendation quality when compared to other hypothesis generation systems built to predict across all available biomedical literature. Reproducibility: All code, experimental data, and pre-trained models are available online: sybrandt.com/2020/agatha. 
    more » « less
  2. Covid-19 has been an unprecedented challenge that disruptively reshaped societies and brought a massive amount of novel knowledge to the scientific community. However, as this knowledge flood has surged, researchers have been disadvantaged by not having access to a platform that can quickly synthesize rapidly emerging information and link the expertise it contains to established knowledge foundations. Aiming to fill this gap, in this paper we propose a research framework that can assist scientists in identifying, retrieving, and understanding Covid-19 knowledge from the ocean of scholarly articles. Incorporating Principal Component Decomposition (PDC), a knowledge model based on text analytics, and hierarchical topic tree analysis, the proposed framework profiles the research landscape, retrieves topic-specific knowledge and visualizes knowledge structures. Addressing 127,971 Covid-19 research papers from PubMed, our PCD topic analysis identifies 35 research hotspots, along with their correlations and trends. The hierarchical topic tree analysis further segments the knowledge landscape of the whole dataset into clinical and public health branches at a macro level. To supplement this analysis, we also built a knowledge model from research papers on vaccinations and fetched 92,286 pre-Covid publications as the established knowledge foundation for reference. The hierarchical topic tree analysis results on the retrieved papers show multiple relevant biomedical disciplines and four future research topics: monoclonal antibody treatments, vaccinations in diabetic patients, vaccine immunity effectiveness and durability, and vaccination-related allergic sensitization. 
    more » « less
  3. We develop an enhanced version of CORD-19 dataset released by the Allen Institute for AI. Tools in the SeerSuite project are used to exploit information in original articles not directly provided in the CORD-19 datasets. We add 728 new abstracts, 70,102 figures and 31,446 tables with captions that are not provided in the current data release. We also built a vertical search engine COVIDSeer based on the new dataset we created. COVIDSeer has a relatively simple architecture with features like keyword filtering, and similar paper recommendation. The goal was to provide a system and dataset that can help scientists better navigate through the literature concerning COVID-19. The enriched dataset can serve as a supplement to the existing dataset. The search engine, which offers keyphrase-enhanced search, will hopefully help biomedical and life science researchers, medical students, and the general public to more effectively explore coronavirus-related literature. The entire data set and the system will be made open source 
    more » « less
  4. Opportunities for research-based learning at the high school level are limited, and with the COVID-19 pandemic, these have been further reduced. Such opportunities are particularly scarce for authentic research experiences (AREs), which allow students to identify as scientists by collecting data that contributes to scientists’ research. In response to the COVID-19 pandemic, we adapted two of our AREs for classroom settings, as remote independent research experiences for students to conduct from home. User guides and protocols from the AREs, Genotype-to-Phenotype Research with Corn and Discover Volvox Development, were adapted to instruct high school students to work on their own with the guidance of scientists and ARE coordinators. These independent authentic research experiences (IAREs) were implemented in the summer of 2020 and have since been available to students. Student responses to reflection questions and the Laboratory Course Assessment Survey indicate that IAREs provide students with significant gains including learning science content and research practices, collaborating with scientists, facing and resolving challenges, and contributing to scientific research. 
    more » « less
  5. null (Ed.)
    Biomedical named entity recognition (BioNER) is a fundamental step for mining COVID-19 literature. Existing BioNER datasets cover a few common coarse-grained entity types (e.g., genes, chemicals, and diseases), which cannot be used to recognize highly domain-specific entity types (e.g., animal models of diseases) or emerging ones (e.g., coronaviruses) for COVID-19 studies. We present CORD-NER, a fine-grained named entity recognized dataset of COVID-19 literature (up until May 19, 2020). CORD-NER contains over 12 million sentences annotated via distant supervision. Also included in CORD-NER are 2,000 manually-curated sentences as a test set for performance evaluation. CORD-NER covers 75 fine-grained entity types. In addition to the common biomedical entity types, it covers new entity types specifically related to COVID-19 studies, such as coronaviruses, viral proteins, evolution, and immune responses. The dictionaries of these fine-grained entity types are collected from existing knowledge bases and human-input seed sets. We further present DISTNER, a distantly supervised NER model that relies on a massive unlabeled corpus and a collection of dictionaries to annotate the COVID-19 corpus. DISTNER provides a benchmark performance on the CORD-NER test set for future research. 
    more » « less