The COVID-19 pandemic has significantly impacted most countries in the world. Analyzing COVID-19 data from these countries together is a prominent challenge. Under the sponsorship of NSF REU, this paper describes our experience with a ten-week project that aims to guide an REU scholar to develop a physics-guided graph attention network to predict the global COVID- 19 Pandemics. We mainly presented the preparation, implementation, and dissemination of the addressed project. The COVID-19 situation in a country could be dramatically different from that of others, which suggests that COVID-19 pandemic data are generated based on different mechanisms, making COVID-19 data in different countries follow different probability distributions. Learning more than one hundred underlying probability distributions for countries in the world from large scale COVID- 19 data is beyond a single machine learning model. To address this challenge, we proposed two team-learning frameworks for predicting the COVID-19 pandemic trends: peer learning and layered ensemble learning framework. This addressed framework assigns an adaptive physics-guided graph attention network (GAT) to each learning agent. All the learning agents are fabricated in a hierarchical architecture, which enables agents to collaborate with each other in peer-to-peer and cross-layer way. This layered architecture shares the burden of large-scale data processing on machine learning models of all units. Experiments are run to verify the effectiveness of our approaches. The results indicate the proposed ensemble outperforms baseline methods. Besides being documented on GitHub, this work has resulted in two journal papers. 
                        more » 
                        « less   
                    
                            
                            COVID-19 knowledge deconstruction and retrieval: an intelligent bibliometric solution
                        
                    
    
            Covid-19 has been an unprecedented challenge that disruptively reshaped societies and brought a massive amount of novel knowledge to the scientific community. However, as this knowledge flood has surged, researchers have been disadvantaged by not having access to a platform that can quickly synthesize rapidly emerging information and link the expertise it contains to established knowledge foundations. Aiming to fill this gap, in this paper we propose a research framework that can assist scientists in identifying, retrieving, and understanding Covid-19 knowledge from the ocean of scholarly articles. Incorporating Principal Component Decomposition (PDC), a knowledge model based on text analytics, and hierarchical topic tree analysis, the proposed framework profiles the research landscape, retrieves topic-specific knowledge and visualizes knowledge structures. Addressing 127,971 Covid-19 research papers from PubMed, our PCD topic analysis identifies 35 research hotspots, along with their correlations and trends. The hierarchical topic tree analysis further segments the knowledge landscape of the whole dataset into clinical and public health branches at a macro level. To supplement this analysis, we also built a knowledge model from research papers on vaccinations and fetched 92,286 pre-Covid publications as the established knowledge foundation for reference. The hierarchical topic tree analysis results on the retrieved papers show multiple relevant biomedical disciplines and four future research topics: monoclonal antibody treatments, vaccinations in diabetic patients, vaccine immunity effectiveness and durability, and vaccination-related allergic sensitization. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2029673
- PAR ID:
- 10473051
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Scientometrics
- ISSN:
- 0138-9130
- Subject(s) / Keyword(s):
- Covid-19 topic analysis knowledge retrieval intelligent bibliometrics
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Knowledge graphs (KGs) are powerful tools that codify relational behaviour between entities in knowledge bases. KGs can simultaneously model many different types of subject-predicate-object and higher-order relations. As such, they offer a flexible modeling framework that has been applied to many areas, including biology and pharmacology – most recently, in the fight against COVID-19. The flexibility of KG modeling is both a blessing and a challenge from the learning point of view. In this paper we propose a novel coupled tensor-matrix framework for KG embedding. We leverage tensor factorization tools to learn concise representations of entities and relations in knowledge bases and employ these representations to perform drug repurposing for COVID-19. Our proposed framework is principled, elegant, and achieves 100% improvement over the best baseline in the COVID-19 drug repurposing task using a recently developed biological KG.more » « less
- 
            We study the role of vaccine acceptance in controlling the spread of COVID-19 in the US using AI-driven agent-based models. Our study uses a 288 million node social contact network spanning all 50 US states plus Washington DC, comprised of 3300 counties, with 12.59 billion daily interactions. The highly-resolved agent-based models use realistic information about disease progression, vaccine uptake, production schedules, acceptance trends, prevalence, and social distancing guidelines. Developing a national model at this resolution that is driven by realistic data requires a complex scalable workflow, model calibration, simulation, and analytics components. Our workflow optimizes the total execution time and helps in improving overall human productivity.This work develops a pipeline that can execute US-scale models and associated workflows that typically present significant big data challenges. Our results show that, when compared to faster and accelerating vaccinations, slower vaccination rates due to vaccine hesitancy cause averted infections to drop from 6.7M to 4.5M, and averted total deaths to drop from 39.4K to 28.2K nationwide. This occurs despite the fact that the final vaccine coverage is the same in both scenarios. Improving vaccine acceptance by 10% in all states increases averted infections from 4.5M to 4.7M (a 4.4% improvement) and total deaths from 28.2K to 29.9K (a 6% increase) nationwide. The analysis also reveals interesting spatio-temporal differences in COVID-19 dynamics as a result of vaccine acceptance. To our knowledge, this is the first national-scale analysis of the effect of vaccine acceptance on the spread of COVID-19, using detailed and realistic agent-based models.more » « less
- 
            COVID-19 has been a sustained and global crisis with a strong continual impact on daily life. Staying accurately informed about COVID-19 has been key to personal and communal safety, especially for essential workers— individuals whose jobs have required them to go into work throughout the pandemic—as their employment has exposed them to higher risks of contracting the virus. Through 14 semi-structured interviews, we explore how essential workers across industries navigated the COVID-19 information landscape to get up-to-date information in the early months of the pandemic. We find that essential workers living through a sustained crisis have a broad set of information needs. We summarize these needs in a framework that centers 1) fulfilling job requirements, 2) assessing personal risk, and 3) keeping up with crisis news coverage. Our findings also show that the sustained nature of COVID-19 crisis coverage led essential workers to experience breaking points and develop coping strategies. Additionally, we show how workplace communications may act as a mediating force in this process: lack of adequate information in the workplace caused workers to struggle with navigating a contested information landscape, while consistent updates and information exchanges at work could ease the stress of information overload. Our findings extend the crisis informatics field by providing contextual knowledge about the information needs of essential workers during a sustained crisis.more » « less
- 
            While the COVID-19 pandemic morphs into less malignant forms, the virus has spawned a series of poorly understood, post-infection symptoms with staggering ramifications, i. e., long COVID (LC). This bibliometric study profiles the rapidly growing LC research domain [5,243 articles from PubMed and Web of Science (WoS)] to make its knowledge content more accessible. The article addresses What? Where? Who? and When? questions. A 13-topic Concept Grid presents bottom-up topic clusters. We break out those topics with other data fields, including disciplinary concentrations, topical details, and information on research “players” (countries, institutions, and authors) engaging in those topics. We provide access to results via a Dashboard website. We find a strongly growing, multidisciplinary LC research domain. That domain appears tightly connected based on shared research knowledge. However, we also observe notable concentrations of research activity in different disciplines. Data trends over 3 years of LC research suggest heightened attention to psychological and neurodegenerative symptoms, fatigue, and pulmonary involvement.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    