skip to main content


Title: Securing the Chain of Custody and Integrity of Data in a Global North-South Partnership to Monitor the Quality of Essential Medicines
Substandard and falsified (SF) pharmaceuticals account for an estimated 10% of the pharmaceutical supply chain in low- and middle-income countries (LMICs), where a lack of regulatory and laboratory resources limits the ability to conduct effective post-market surveillance and allows SF products to penetrate the supply chain. The Distributed Pharmaceutical Analysis Laboratory (DPAL) was established in 2014 to expand testing of pharmaceutical dosage forms sourced from LMICs; DPAL is an alliance of academic institutions throughout the United States and abroad that provides high quality, validated chemical analysis of pharmaceutical dosage forms sourced from partners in LMICs. Results from analysis are reported to relevant regulatory agencies and are used to inform purchasing decisions made by in-country stakeholders. As the DPAL program has expanded to testing more than 1000 pharmaceutical dosage forms annually, challenges have surfaced regarding data management and sample tracking. Here, we describe a pilot project between DPAL and ARTiFACTs that applies blockchain to organize and manage key data generated during the DPAL workflow, including a sample’s progress through the workflow, its physical location, provenance of metadata, and lab reputability. Recording time and date stamps with this data will create a permanent and verifiable chain-of-custody for samples. This secure, distributed ledger will be linked to an easy-to-use dashboard, allowing stakeholders to view results and experimental details for each sample in real time and verify the integrity of DPAL analysis data. Introducing this blockchain-based system as a pilot will allow us to test the technology with real users analyzing real samples. Feedback from users will be recorded and necessary adjustments will be made to the system before the implementation of blockchain across all DPAL sites. Anticipated benefits of implementing blockchain for managing DPAL data include efficient management for routing work, increasing throughput, creating a chain of custody for samples and their data in alignment with the distributed nature of DPAL, and using the analysis results to detect patterns of quality within and across brands of products and develop enhanced sampling techniques and best practices.  more » « less
Award ID(s):
1842369
NSF-PAR ID:
10356202
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Blockchain in Healthcare Today
ISSN:
2573-8240
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. PURPOSE A postmarket evaluation of chemotherapy dosage forms in Ethiopia was conducted to test the accuracy of the chemoPAD, a paper analytical device for drug quality screening. MATERIALS AND METHODS In September of 2018 in Addis Ababa, Ethiopia, 41 anticancer drug dosage forms (representing 4 active ingredients, 5 brands, and 7 lot numbers) were collected and were rapidly screened for quality using a chemotherapy paper analytical device (chemoPAD). Confirmatory analysis via high performance liquid chromatography was conducted. RESULTS The chemoPAD showed that the correct active pharmaceutical ingredient was present in doxorubicin, methotrexate, and oxaliplatin injectable dosage forms. However, 11 of 20 cisplatin samples failed the screening test. Confirmatory assay by high-performance liquid chromatography showed that all 20 cisplatin samples—comprising three lot numbers of a product stated to be Cisteen—were substandard, containing on average 54% ± 6% of the stated cisplatin content. Inductively coupled plasma optical emission spectroscopy analysis of five representative samples found 57% to 71% of the platinum that should have been present. The sensitivity of the chemoPAD for detection of falsified products could not be measured (as none were present in these samples), but the selectivity was 100% (no false positives). The sensitivity for detection of substandard products was 55%, and the selectivity was 100% (no false positives). CONCLUSION Although instrumental analysis by pharmacopeia methods must remain the gold standard for assessing overall drug quality, these methods are time consuming and patients could be exposed to a bad-quality drug while clinical workers wait for testing to be performed. The chemoPAD technology could allow clinicians to check at the point of use for serious problems in the quality of chemotherapy drugs on a weekly or monthly schedule. 
    more » « less
  2. Substandard and falsified pharmaceuticals, prevalent in low- and middle-income countries, substantially increase levels of morbidity, mortality and drug resistance. Regulatory agencies combat this problem using post-market surveillance by collecting and testing samples where consumers purchase products. Existing analysis tools for post-market surveillance data focus attention on the locations of positive samples. This article looks to expand such analysis through underutilized supply-chain information to provide inference on sources of substandard and falsified products. We first establish the presence of unidentifiability issues when integrating this supply-chain information with surveillance data. We then develop a Bayesian methodology for evaluating substandard and falsified sources that extracts utility from supply-chain information and mitigates unidentifiability while accounting for multiple sources of uncertainty. Using de-identified surveillance data, we show the proposed methodology to be effective in providing valuable inference. 
    more » « less
  3. The drug shortage crisis in the last decade not only increased health care costs but also jeopardized patients’ health across the United States. Ensuring that any drug is available to patients at health care centers is a problem that official health care administrators and other stakeholders of supply chains continue to face. Furthermore, managing pharmaceutical supply chains is very complex, as inevitable disruptions occur in these supply chains (exogenous factors), which are then followed by decisions members make after such disruptions (internal factors). Disruptions may occur due to increased demand, a product recall, or a manufacturer disruption, among which product recalls—which happens frequently in pharmaceutical supply chains—are least studied. We employ a mathematical simulation model to examine the effects of product recalls considering different disruption profiles, e.g., the propagation in time and space, and the interactions of decision makers on drug shortages to ascertain how these shortages can be mitigated by changing inventory policy decisions. We also measure the effects of different policy approaches on supply chain disruptions, using two performance measures: inventory levels and shortages of products at health care centers. We then analyze the results using an approach similar to data envelopment analysis to characterize the efficient frontier (best inventory policies) for varying cost ratios of the two performance measures as they correspond to the different disruption patterns. This analysis provides insights into the consequences of choosing an inappropriate inventory policy when disruptions take place. 
    more » « less
  4. The unique features of blockchains such as immutability, transparency, provenance, and authenticity have been used by many large-scale data management systems to deploy a wide range of distributed applications including supply chain management, healthcare, and crowdworking in permissioned settings. Unlike permissionless settings, e.g., Bitcoin, where the network is public, and anyone can participate without a specific identity, a permissioned blockchain system consists of a set of known, identified nodes that might not fully trust each other. While the characteristics of permissioned blockchains are appealing to a wide range of largescale data management systems, these systems, have to satisfy four main requirements: confidentiality, verifiability, performance, and scalability. Various approaches have been developed in industry and academia to satisfy these requirements with varying assumptions and costs. The focus of this tutorial is on presenting many of these techniques while highlighting the trade-offs among them. We demonstrate the practicality of such techniques in real-life by presenting three different applications, i.e., supply chain management, large-scale databases, and multi-platform crowdworking environments, and show how those techniques can be utilized to meet the requirements of such applications 
    more » « less
  5. Solving the wicked problems of food system sustainability requires a process of knowledge co-production among diverse actors in society. We illustrate a generalized workflow for knowledge co-production in food systems with a pair of case studies from the response of the meat and dairy production sectors in the wake of the COVID-19 pandemic. The first case study serves as an example of a scientific workflow and uses a GIS method (location allocation) to examine the supply chain linkages between meat and dairy producers and processors in Ohio. This analysis found that meat producers and processors are less clustered and more evenly distributed across the state than dairy producers and processors, with some dairy processors potentially needing to rely on supply from producers up to 252 km away. The second case study in California adds an example of a stakeholder workflow in parallel to a scientific workflow and describes the outcome of a series of interviews with small and mid-scale meat producers and processors concerning their challenges and opportunities, with the concentration of processors arising as the top challenge faced by producers. We present a pair of workflow diagrams for the two case studies that illustrate where the processes of knowledge co-production are situated. Examining these workflow processes highlights the importance of data privacy, data governance, and boundary spanners that connect stakeholders. 
    more » « less