We explore the effect of auxiliary labels in improving the classification accuracy of wearable sensor-based human activity recognition (HAR) systems, which are primarily trained with the supervision of the activity labels (e.g. running, walking, jumping). Supplemental meta-data are often available during the data collection process such as body positions of the wearable sensors, subjects' demographic information (e.g. gender, age), and the type of wearable used (e.g. smartphone, smart-watch). This information, while not directly related to the activity classification task, can nonetheless provide auxiliary supervision and has the potential to significantly improve the HAR accuracy by providing extra guidance on how to handle the introduced sample heterogeneity from the change in domains (i.e positions, persons, or sensors), especially in the presence of limited activity labels. However, integrating such meta-data information in the classification pipeline is non-trivial - (i) the complex interaction between the activity and domain label space is hard to capture with a simple multi-task and/or adversarial learning setup, (ii) meta-data and activity labels might not be simultaneously available for all collected samples. To address these issues, we propose a novel framework Conditional Domain Embeddings (CoDEm). From the available unlabeled raw samples and their domain meta-data, we first learn a set of domain embeddings using a contrastive learning methodology to handle inter-domain variability and inter-domain similarity. To classify the activities, CoDEm then learns the label embeddings in a contrastive fashion, conditioned on domain embeddings with a novel attention mechanism, enforcing the model to learn the complex domain-activity relationships. We extensively evaluate CoDEm in three benchmark datasets against a number of multi-task and adversarial learning baselines and achieve state-of-the-art performance in each avenue.
more »
« less
This content will become publicly available on June 29, 2025
AcouDL: Context-Aware Daily Activity Recognition from Natural Acoustic Signals
The ubiquitousness of smart and wearable devices with integrated acoustic sensors in modern human lives presents tremendous opportunities for recognizing human activities in our living spaces through ML-driven applications. However, their adoption is often hindered by the requirement of large amounts of labeled data during the model training phase. Integration of contextual metadata has the potential to alleviate this since the nature of these meta-data is often less dynamic (e.g. cleaning dishes, and cooking both can happen in the kitchen context) and can often be annotated in a less tedious manner (a sensor always placed in the kitchen). However, most models do not have good provisions for the integration of such meta-data information. Often, the additional metadata is leveraged in the form of multi-task learning with sub-optimal outcomes. On the other hand, reliably recognizing distinct in-home activities with similar acoustic patterns (e.g. chopping, hammering, knife sharpening) poses another set of challenges. To mitigate these challenges, we first show in our preliminary study that the room acoustics properties such as reverberation, room materials, and background noise leave a discernible fingerprint in the audio samples to recognize the room context and proposed AcouDL as a unified framework to exploit room context information to improve activity recognition performance. Our proposed self-supervision-based approach first learns the context features of the activities by leveraging a large amount of unlabeled data using a contrastive learning mechanism and then incorporates this feature induced with a novel attention mechanism into the activity classification pipeline to improve the activity recognition performance. Extensive evaluation of AcouDL on three datasets containing a wide range of activities shows that such an efficient feature fusion-mechanism enables the incorporation of metadata that helps to better recognition of the activities under challenging classification scenarios with 0.7-3.5% macro F1 score improvement over the baselines.
more »
« less
- Award ID(s):
- 1750936
- PAR ID:
- 10587410
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 979-8-3503-4994-8
- Page Range / eLocation ID:
- 332 to 337
- Format(s):
- Medium: X
- Location:
- Osaka, Japan
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The success and impact of activity recognition algorithms largely depends on the availability of the labeled training samples and adaptability of activity recognition models across various domains. In a new environment, the pre-trained activity recognition models face challenges in presence of sensing bias- ness, device heterogeneities, and inherent variabilities in human behaviors and activities. Activity Recognition (AR) system built in one environment does not scale well in another environment, if it has to learn new activities and the annotated activity samples are scarce. Indeed building a new activity recognition model and training the model with large annotated samples often help overcome this challenging problem. However, collecting annotated samples is cost-sensitive and learning activity model at wild is computationally expensive. In this work, we propose an activity recognition framework, UnTran that utilizes source domains' pre-trained autoencoder enabled activity model that transfers two layers of this network to generate a common feature space for both source and target domain activities. We postulate a hybrid AR framework that helps fuse the decisions from a trained model in source domain and two activity models (raw and deep-feature based activity model) in target domain reducing the demand of annotated activity samples to help recognize unseen activities. We evaluated our framework with three real-world data traces consisting of 41 users and 26 activities in total. Our proposed UnTran AR framework achieves ≈ 75% F1 score in recognizing unseen new activities using only 10% labeled activity data in the target domain. UnTran attains ≈ 98% F1 score while recognizing seen activities in presence of only 2-3% of labeled activity samples.more » « less
-
Human activity recognition (HAR) from wearable sensor data has recently gained widespread adoption in a number of fields. However, recognizing complex human activities, postural and rhythmic body movements (e.g., dance, sports) is challenging due to the lack of domain-specific labeling information, the perpetual variability in human movement kinematics profiles due to age, sex, dexterity and the level of professional training. In this paper, we propose a deep activity recognition model to work with limited labeled data, both for simple and complex human activities. To mitigate the intra- and inter-user spatio-temporal variability of movements, we posit novel data augmentation and domain normalization techniques. We depict a semi-supervised technique that learns noise and transformation invariant feature representation from sparsely labeled data to accommodate intra-personal and inter-user variations of human movement kinematics. We also postulate a transfer learning approach to learn domain invariant feature representations by minimizing the feature distribution distance between the source and target domains. We showcase the improved performance of our proposed framework, AugToAct, using a public HAR dataset. We also design our own data collection, annotation and experimental setup on complex dance activity recognition steps and kinematics movements where we achieved higher performance metrics with limited label data compared to simple activity recognition tasks.more » « less
-
null (Ed.)Annotated IMU sensor data from smart devices and wearables are essential for developing supervised models for fine-grained human activity recognition, albeit generating sufficient annotated data for diverse human activities under different environments is challenging. Existing approaches primarily use human-in-the-loop based techniques, including active learning; however, they are tedious, costly, and time-consuming. Leveraging the availability of acoustic data from embedded microphones over the data collection devices, in this paper, we propose LASO, a multimodal approach for automated data annotation from acoustic and locomotive information. LASO works over the edge device itself, ensuring that only the annotated IMU data is collected, discarding the acoustic data from the device itself, hence preserving the audio-privacy of the user. In the absence of any pre-existing labeling information, such an auto-annotation is challenging as the IMU data needs to be sessionized for different time-scaled activities in a completely unsupervised manner. We use a change-point detection technique while synchronizing the locomotive information from the IMU data with the acoustic data, and then use pre-trained audio-based activity recognition models for labeling the IMU data while handling the acoustic noises. LASO efficiently annotates IMU data, without any explicit human intervention, with a mean accuracy of 0.93 ($$\pm 0.04$$) and 0.78 ($$\pm 0.05$$) for two different real-life datasets from workshop and kitchen environments, respectively.more » « less
-
End-to-end deep learning models are increasingly applied to safety-critical human activity recognition (HAR) applications, e.g., healthcare monitoring and smart home control, to reduce developer burden and increase the performance and robustness of prediction models. However, integrating HAR models in safety-critical applications requires trust, and recent approaches have aimed to balance the performance of deep learning models with explainable decision-making for complex activity recognition. Prior works have exploited the compositionality of complex HAR (i.e., higher-level activities composed of lower-level activities) to form models with symbolic interfaces, such as concept-bottleneck architectures, that facilitate inherently interpretable models. However, feature engineering for symbolic concepts-as well as the relationship between the concepts-requires precise annotation of lower-level activities by domain experts, usually with fixed time windows, all of which induce a heavy and error-prone workload on the domain expert. In this paper, we introduce X-CHAR, an eXplainable Complex Human Activity Recognition model that doesn't require precise annotation of low-level activities, offers explanations in the form of human-understandable, high-level concepts, while maintaining the robust performance of end-to-end deep learning models for time series data. X-CHAR learns to model complex activity recognition in the form of a sequence of concepts. For each classification, X-CHAR outputs a sequence of concepts and a counterfactual example as the explanation. We show that the sequence information of the concepts can be modeled using Connectionist Temporal Classification (CTC) loss without having accurate start and end times of low-level annotations in the training dataset-significantly reducing developer burden. We evaluate our model on several complex activity datasets and demonstrate that our model offers explanations without compromising the prediction accuracy in comparison to baseline models. Finally, we conducted a mechanical Turk study to show that the explanations provided by our model are more understandable than the explanations from existing methods for complex activity recognition.more » « less