skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A combined computational and experimental study of methane activation during oxidative coupling of methane (OCM) by surface metal oxide catalysts
The experimentally validated computational models developed herein, for the first time, show that Mn-promotion does not enhance the activity of the surface Na 2 WO 4 catalytic active sites for CH 4 heterolytic dissociation during OCM. Contrary to previous understanding, it is demonstrated that Mn-promotion poisons the surface WO 4 catalytic active sites resulting in surface WO 5 sites with retarded kinetics for C–H scission. On the other hand, dimeric Mn 2 O 5 surface sites, identified and studied via ab initio molecular dynamics and thermodynamics, were found to be more efficient in activating CH 4 than the poisoned surface WO 5 sites or the original WO 4 sites. However, the surface reaction intermediates formed from CH 4 activation over the Mn 2 O 5 surface sites are more stable than those formed over the Na 2 WO 4 surface sites. The higher stability of the surface intermediates makes their desorption unfavorable, increasing the likelihood of over-oxidation to CO x , in agreement with the experimental findings in the literature on Mn-promoted catalysts. Consequently, the Mn-promoter does not appear to have an essential positive role in synergistically tuning the structure of the Na 2 WO 4 surface sites towards CH 4 activation but can yield MnO x surface sites that activate CH 4 faster than Na 2 WO 4 surface sites, but unselectively.  more » « less
Award ID(s):
1706581
PAR ID:
10356257
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Chemical Science
Volume:
12
Issue:
42
ISSN:
2041-6520
Page Range / eLocation ID:
14143 to 14158
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The molecular and electronic structures and chemical properties of the active sites on the surface of supported Na 2 WO 4 /SiO 2 catalysts used for oxidative coupling of methane (OCM) are poorly understood. Model SiO 2 -supported, Na-promoted tungsten oxide catalysts (Na–WO x /SiO 2 ) were systematically prepared using various Na- and W-precursors using carefully controlled Na/W molar ratios and examined with in situ Raman, UV-vis DR, CO 2 -TPD-DRIFT and NH 3 -TPD-DRIFT spectroscopies. The traditionally-prepared catalysts corresponding to 5% Na 2 WO 4 nominal loading, with Na/W molar ratio of 2, were synthesized from the aqueous Na 2 WO 4 ·2H 2 O precursor. After calcination at 800 °C, the initially amorphous SiO 2 support crystallized to the cristobalite phase and the supported sodium tungstate phase consisted of both crystalline Na 2 WO 4 nanoparticles (Na/W = 2) and dispersed phase Na–WO 4 surface sites (Na/W < 2). On the other hand, the catalysts prepared via a modified impregnation method using individual precursors of NaOH + AMT, such that the Na/W molar ratio remained well below 2, resulted in: (i) SiO 2 remaining amorphous (ii) only dispersed phase Na–WO 4 surface sites. The dispersed Na–WO 4 surface sites were isolated, more geometrically distorted, less basic in nature, and more reducible than the crystalline Na 2 WO 4 nanoparticles. The CH 4 + O 2 -TPSR results reveal that the isolated, dispersed phase Na–WO 4 surface sites were significantly more C 2 selective, but slightly less active than the traditionally-prepared catalysts that contain crystalline Na 2 WO 4 nanoparticles (Na/W = 2). These findings demonstrate that the isolated, dispersed phase Na–WO 4 sites on the SiO 2 support surface are the selective-active sites for the OCM reaction. 
    more » « less
  2. Abstract The complex structure of the catalytic active phase, and surface‐gas reaction networks have hindered understanding of the oxidative coupling of methane (OCM) reaction mechanism by supported Na2WO4/SiO2catalysts. The present study demonstrates, with the aid of in situ Raman spectroscopy and chemical probe (H2‐TPR, TAP and steady‐state kinetics) experiments, that the long speculated crystalline Na2WO4active phase is unstable and melts under OCM reaction conditions, partially transforming to thermally stable surface Na‐WOxsites. Kinetic analysis via temporal analysis of products (TAP) and steady‐state OCM reaction studies demonstrate that (i) surface Na‐WOxsites are responsible for selectively activating CH4to C2Hxand over‐oxidizing CHyto CO and (ii) molten Na2WO4phase is mainly responsible for over‐oxidation of CH4to CO2and also assists in oxidative dehydrogenation of C2H6to C2H4. These new insights reveal the nature of catalytic active sites and resolve the OCM reaction mechanism over supported Na2WO4/SiO2catalysts. 
    more » « less
  3. This review focuses on recent fundamental insights about methane dehydroaromatization (MDA) to benzene over ZSM-5-supported transition metal oxide-based catalysts (MO x /ZSM-5, where M = V, Cr, Mo, W, Re, Fe). Benzene is an important organic intermediate, used for the synthesis of chemicals like ethylbenzene, cumene, cyclohexane, nitrobenzene and alkylbenzene. Current production of benzene is primarily from crude oil processing, but due to the abundant availability of natural gas, there is much recent interest in developing direct processes to convert CH 4 to liquid chemicals. Among the various gas-to-liquid methods, the thermodynamically-limited Methane DehydroAromatization (MDA) to benzene under non-oxidative conditions appears very promising as it circumvents deep oxidation of CH 4 to CO 2 and does not require the use of a co-reactant. The findings from the MDA catalysis literature is critically analyzed with emphasis on in situ and operando spectroscopic characterization to understand the molecular level details regarding the catalytic sites before and during the MDA reaction. Specifically, this review discusses the anchoring sites of the supported MO x species on the ZSM-5 support, molecular structures of the initial dispersed surface MO x sites, nature of the active sites during MDA, reaction mechanisms, rate-determining step, kinetics and catalyst activity of the MDA reaction. Finally, suggestions are given regarding future experimental investigations to fill the information gaps currently found in the literature. 
    more » « less
  4. Abstract Na2WO4/SiO2, a material known to catalyze alkane selective oxidation including the oxidative coupling of methane (OCM), is demonstrated to catalyze selective hydrogen combustion (SHC) with >97 % selectivity in mixtures with several hydrocarbons (CH4, C2H6, C2H4, C3H6, C6H6) in the presence of gas‐phase dioxygen at 883–983 K. Hydrogen combustion rates exhibit a near‐first‐order dependence on H2partial pressure and are zero‐order in H2O and O2partial pressures. Mechanistic studies at 923 K using isotopically‐labeled reagents demonstrate the kinetic relevance of H−H dissociation and absence of O‐atom recombination. In situ X‐ray diffraction (XRD) and W LIII‐edge X‐ray absorption spectroscopy (XAS) studies demonstrate, respectively, a loss of Na2WO4crystallinity and lack of second‐shell coordination with respect to W6+cations below 923 K; benchmark experiments show that alkali cations must be present for the material to be selective for hydrogen combustion, but that materials containing Na alone have much lower combustion rates (per gram Na) than those containing Na and W. These data suggest a synergy between Na and W in a disordered phase at temperatures below the bulk melting point of Na2WO4(971 K) during SHC catalysis. The Na2WO4/SiO2SHC catalyst maintains stable combustion rates at temperatures ca. 100 K higher than redox‐active SHC catalysts and could potentially enable enhanced olefin yields in tandem operation of reactors combining alkane dehydrogenation with SHC processes. 
    more » « less
  5. The oxidative coupling of methane to ethylene using gaseous disulfur (2CH4+ S2→ C2H4+ 2H2S) as an oxidant (SOCM) proceeds with promising selectivity. Here, we report detailed experimental and theoretical studies that examine the mechanism for the conversion of CH4to C2H4over an Fe3O4-derived FeS2catalyst achieving a promising ethylene selectivity of 33%. We compare and contrast these results with those for the highly exothermic oxidative coupling of methane (OCM) using O2(2CH4+ O2→ C2H4+ 2H2O). SOCM kinetic/mechanistic analysis, along with density functional theory results, indicate that ethylene is produced as a primary product of methane activation, proceeding predominantly via CH2coupling over dimeric S–S moieties that bridge Fe surface sites, and to a lesser degree, on heavily sulfided mononuclear sites. In contrast to and unlike OCM, the overoxidized CS2by-product forms predominantly via CH4oxidation, rather than from C2products, through a series of C–H activation and S-addition steps at adsorbed sulfur sites on the FeS2surface. The experimental rates for methane conversion are first order in both CH4and S2, consistent with the involvement of two S sites in the rate-determining methane C–H activation step, with a CD4/CH4kinetic isotope effect of 1.78. The experimental apparent activation energy for methane conversion is 66 ± 8 kJ/mol, significantly lower than for CH4oxidative coupling with O2. The computed methane activation barrier, rate orders, and kinetic isotope values are consistent with experiment. All evidence indicates that SOCM proceeds via a very different pathway than that of OCM. 
    more » « less