skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Detector-Informed Batch Steganography and Pooled Steganalysis
We study the problem of batch steganography when the senders use feedback from a steganography detector. This brings an additional level of complexity to the table due to the highly non-linear and non-Gaussian response of modern steganalysis detectors as well as the necessity to study the impact of the inevitable mismatch between senders’ and Warden’s detectors. Two payload spreaders are considered based on the oracle generating possible cover images. Three different pooling strategies are devised and studied for a more comprehensive assessment of security. Substantial security gains are observed with respect to previous art – the detector-agnostic image-merging sender. Close attention is paid to the impact of the information available to the Warden on security.  more » « less
Award ID(s):
2028119
PAR ID:
10356404
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ACM Information Hiding and Multimedia Security
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The steganographic field is nowadays dominated by heuristic approaches for data hiding. While there exist a few model-based steganographic algorithms designed to minimize statistical detectability of the underlying model, many more algorithms based on costs of changing a specific pixel or a DCT coefficient have been over the last decade introduced. These costs are purely heuristic, as they are designed with feedback from detectors implemented as machine learning classifiers. For this reason, there is no apparent relation to statistical detectability, even though in practice they provide comparable security to model-based algorithms. Clearly, the security of such algorithms stands only on the assumption, that the detector used to assess the security, is the best one possible. Such assumption is of course completely unrealistic. Similarly, steganalysis is mainly implemented with empirical machine learning detectors, which use hand-crafted features computed from images or as deep learning detectors - convolutional neural networks. The biggest drawback of this approach is, that the steganalyst, even though having a very good detection power, has very little to no knowledge about what part of the image or the embedding algorithm contributes to the detection, because the detector is used as a black box. In this work, we will try to leave the heuristics behind and go towards statistical models. First, we introduce statistical models for current heuristic algorithms, which helps us understand and predict their security trends. Furthemore this allows us to improve the security of such algorithms. Next, we focus on steganalysis exploiting universal properties of JPEG images. Under certain realistic conditions, this leads to a very powerful attack against any steganography, because embedding even a very small secret message breaks the statistical model. Lastly, we show how we can improve security of JPEG compressed images through additional compression. 
    more » « less
  2. This paper deals with the problem of batch steganography and pooled steganalysis when the sender uses a steganography detector to spread chunks of the payload across a bag of cover images while the Warden uses a possibly different detector for her pooled steganalysis. We investigate how much information can be communicated with increasing bag size at a fixed statistical detectability of Warden’s detector. Specifically, we are interested in the scaling exponent of the secure payload. We approach this problem both theoretically from a statistical model of the soft output of a detector and practically using experiments on real datasets when giving both actors different detectors implemented as convolutional neural networks and a classifier with a rich model. While the effect of the detector mismatch depends on the payload allocation algorithm and the type of mismatch, in general the mismatch decreases the constant of proportionality as well as the exponent. This stays true independently of who has the superior detector. Many trends observed in experiments qualitatively match the theoretical predictions derived within our model. Finally, we summarize our most important findings as lessons for the sender and for the Warden. 
    more » « less
  3. null (Ed.)
    Detecting the OS-level malware (e.g., rootkit) is an especially challenging problem, as this type of malware can compromise the OS, and can then easily hide their intrusion behaviors or directly subvert the traditional malware detectors running in either the user or the kernel space. In this work, we propose mobiDOM to solve this problem for mobile computing devices. The key idea of mobiDOM is to securely detect the OS-level malware by fully utilizing the existing secure features of a mobile device in the hardware. Specifically, we integrate a malware detector in the flash translation layer (FTL), a firmware layer embedded into the external flash storage which is inaccessible to the OS; in addition, we build a trusted application in the Arm TrustZone secure world, which acts as a user-level controller of the malware detector. The FTL-based malware detector and the TrustZone-based controller communicate with each other stealthily via steganography. Security analysis and experimental evaluation confirm that mobiDOM can securely and effectively detect the OS-level malware. 
    more » « less
  4. In batch steganography, the sender distributes the secret payload among multiple images from a “bag” to decrease the chance of being caught. Recent work on this topic described an experimentally discovered phenomenon, which we call the “bag gain”: for fixed communication rate, pooled detectors experience a decrease in statistical detectability for initially increasing bag sizes, providing an opportunity for the sender to gain in security. The bag gain phenomenon is universal in the sense of manifesting under a wide spectrum of conditions. In this paper, we explain this experimental observation by adopting a statistical model of detector response. Despite the simplicity of the model, it does capture observed trends in detectability as a function of the bag size, the rate, and cover source properties. Additionally, and surprisingly, the model predicts that in certain cover sources the sender should avoid bag sizes that are too small as this can lead to a bag loss. 
    more » « less
  5. Understanding the mechanisms that lead to false alarms (erro- neously detecting cover images as containing secrets) in steganaly- sis is a topic of utmost importance for practical applications. In this paper, we present evidence that a relatively small number of pixel outliers introduced by the image acquisition process can skew the soft output of a data driven detector to produce a strong false alarm. To verify this hypothesis, for a cover image we estimate a statistical model of the acquisition noise in the developed domain and identify pixels that contribute the most to the associated likelihood ratio test (LRT) for steganography. We call such cover elements LIEs (Locally Infuential Elements). The efect of LIEs on the output of a data-driven detector is demonstrated by turning a strong false alarm into a correctly classifed cover by introducing a relatively small number of “de-embedding” changes at LIEs. Similarly, we show that it is possible to introduce a small number of LIEs into a strong cover to make a data driven detector classify it as stego. Our fndings are supported by experiments on two datasets with three steganographic algorithms and four types of data driven detectors. 
    more » « less