skip to main content


Title: Advances in the Theory of Planar Curve Cognates
Abstract Cognate linkages provide the useful property in mechanism design of having the same motion. This paper describes an approach for determining all coupler curve cognates for planar linkages with rotational joints. Although a prior compilation of six-bar cognates due to Dijksman purported to be a complete list, that analysis assumed, without proof, that cognates only arise by permuting link rotations. Our approach eliminates that assumption using arguments concerning the singular foci of the coupler curve to constrain a cognate search and then completing the analysis by solving a precision point problem. This analysis confirms that Dijksman’s list for six-bars is comprehensive. As we further demonstrate on an eight-bar and a ten-bar example, the method greatly constrains the set of permutations of link rotations that can possibly lead to cognates, thereby facilitating the discovery of all cognates that arise in that manner. However, for these higher order linkages, the further step of using a precision point test to eliminate the possibility of any other cognates is still beyond our computational capabilities.  more » « less
Award ID(s):
1812746
NSF-PAR ID:
10356418
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Mechanisms and Robotics
Volume:
14
Issue:
3
ISSN:
1942-4302
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Cognate linkages are mechanisms that share the same motion, a property that can be useful in mechanical design. This article treats planar curve cognates, that is, planar mechanisms with rotational joints whose coupler points draw the same curve, as well as coupler cognates and timed curve cognates. The purpose of this article is to develop a straightforward method based solely on kinematic equations to construct cognates. The approach computes cognates that arise from permuting link rotations and is shown to reproduce all of the known results for cognates of four-bar and six-bar linkages. This approach is then used to construct a cognate of an eight-bar and a ten-bar linkage. 
    more » « less
  2. Abstract Following recent work on Stephenson-type mechanisms, the synthesis equations of Watt six-bar mechanisms that act as timed curve generators are formulated and systematically solved. Four variations of the problem arise by assigning the actuator and end effector onto different links. The approach produces exact synthesis of mechanisms up to eight precision points. Polynomial systems are formulated and their maximum number of solutions is estimated using the algorithm of random monodromy loops. Certain variations of Watt timed curve generators possess free parameters that do not affect the output motion, indicating a continuous space of cognate mechanisms. Packaging compactness, clearance, and dimensional sensitivity are characterized across the cognate space to illustrate trade-offs and aid in selection of a final mechanism. 
    more » « less
  3. Abstract

    This paper focuses on the representation and synthesis of coupler curves of planar mechanisms using a deep neural network. While the path synthesis of planar mechanisms is not a new problem, the effective representation of coupler curves in the context of neural networks has not been fully explored. This study compares four commonly used features or representations of four-bar coupler curves: Fourier descriptors, wavelets, point coordinates, and images. The results demonstrate that these diverse representations can be unified using a generative AI framework called variational autoencoder (VAE). This study shows that a VAE can provide a standalone representation of a coupler curve, regardless of the input representation, and that the compact latent dimensions of the VAE can be used to describe coupler curves of four-bar linkages. Additionally, a new approach that utilizes a VAE in conjunction with a fully connected neural network to generate dimensional parameters of four-bar linkage mechanisms is proposed. This research presents a novel opportunity for the automated conceptual design of mechanisms for robots and machines.

     
    more » « less
  4. The approximate path synthesis of four-bar linkages with symmetric coupler curves is presented. This includes the formulation of a polynomial optimization problem, a characterization of the maximum number of critical points, a complete numerical solution by homotopy continuation, and application to the design of straight line generators. Our approach specifies a desired curve and finds several optimal four-bar linkages with a coupler trace that approximates it. The objective posed simultaneously enforces kinematic accuracy, loop closure, and leads to polynomial first order necessary conditions with a structure that remains the same for any desired trace leading to a generalized result. Ground pivot locations are set as chosen parameters, and it is shown that the objective has a maximum of 73 critical points. The theoretical work is applied to the design of straight line paths. Parameter homotopy runs are executed for 1440 different choices of ground pivots for a thorough exploration. These computations found the expected linkages, namely, Watt, Evans, Roberts, Chebyshev, and other previously unreported linkages which are organized into a 2D atlas using the UMAP algorithm. 
    more » « less
  5. Abstract

    Spatial biases are a common feature of presence–absence data from citizen scientists. Spatial thinning can mitigate errors in species distribution models (SDMs) that use these data. When detections or non‐detections are rare, however, SDMs may suffer from class imbalance or low sample size of the minority (i.e. rarer) class. Poor predictions can result, the severity of which may vary by modelling technique.

    To explore the consequences of spatial bias and class imbalance in presence–absence data, we used eBird citizen science data for 102 bird species from the northeastern USA to compare spatial thinning, class balancing and majority‐only thinning (i.e. retaining all samples of the minority class). We created SDMs using two parametric or semi‐parametric techniques (generalized linear models and generalized additive models) and two machine learning techniques (random forest and boosted regression trees). We tested the predictive abilities of these SDMs using an independent and systematically collected reference dataset with a combination of discrimination (area under the receiver operator characteristic curve; true skill statistic; area under the precision‐recall curve) and calibration (Brier score; Cohen's kappa) metrics.

    We found large variation in SDM performance depending on thinning and balancing decisions. Across all species, there was no single best approach, with the optimal choice of thinning and/or balancing depending on modelling technique, performance metric and the baseline sample prevalence of species in the data. Spatially thinning all the data was often a poor approach, especially for species with baseline sample prevalence <0.1. For most of these rare species, balancing classes improved model discrimination between presence and absence classes using machine learning techniques, but typically hindered model calibration.

    Baseline sample prevalence, sample size, modelling approach and the intended application of SDM output—whether discrimination or calibration—should guide decisions about how to thin or balance data, given the considerable influence of these methodological choices on SDM performance. For prognostic applications requiring good model calibration (vis‐à‐vis discrimination), the match between sample prevalence and true species prevalence may be the overriding feature and warrants further investigation.

     
    more » « less