skip to main content


Title: Human occupation of northern India spans the Toba super-eruption ~74,000 years ago
Abstract India is located at a critical geographic crossroads for understanding the dispersal of Homo sapiens out of Africa and into Asia and Oceania. Here we report evidence for long-term human occupation, spanning the last ~80 thousand years, at the site of Dhaba in the Middle Son River Valley of Central India. An unchanging stone tool industry is found at Dhaba spanning the Toba eruption of ~74 ka (i.e., the Youngest Toba Tuff, YTT) bracketed between ages of 79.6 ± 3.2 and 65.2 ± 3.1 ka, with the introduction of microlithic technology ~48 ka. The lithic industry from Dhaba strongly resembles stone tool assemblages from the African Middle Stone Age (MSA) and Arabia, and the earliest artefacts from Australia, suggesting that it is likely the product of Homo sapiens as they dispersed eastward out of Africa.  more » « less
Award ID(s):
1735891
NSF-PAR ID:
10356420
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
11
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Evidence for Quaternary climate change in East Africa has been derived from outcrops on land and lake cores and from marine dust, leaf wax, and pollen records. These data have previously been used to evaluate the impact of climate change on hominin evolution, but correlations have proved to be difficult, given poor data continuity and the great distances between marine cores and terrestrial basins where fossil evidence is located. Here, we present continental coring evidence for progressive aridification since about 575 thousand years before present (ka), based on Lake Magadi (Kenya) sediments. This long-term drying trend was interrupted by many wet–dry cycles, with the greatest variability developing during times of high eccentricity-modulated precession. Intense aridification apparent in the Magadi record took place between 525 and 400 ka, with relatively persistent arid conditions after 350 ka and through to the present. Arid conditions in the Magadi Basin coincide with the Mid-Brunhes Event and overlap with mammalian extinctions in the South Kenya Rift between 500 and 400 ka. The 525 to 400 ka arid phase developed in the South Kenya Rift between the period when the last Acheulean tools are reported (at about 500 ka) and before the appearance of Middle Stone Age artifacts (by about 320 ka). Our data suggest that increasing Middle- to Late-Pleistocene aridification and environmental variability may have been drivers in the physical and cultural evolution ofHomo sapiensin East Africa.

     
    more » « less
  2. Abstract

    Despite more than half a century of hominin fossil discoveries in eastern Africa, the regional environmental context of hominin evolution and dispersal is not well established due to the lack of continuous palaeoenvironmental records from one of the proven habitats of early human populations, particularly for the Pleistocene epoch. Here we present a 620,000-year environmental record from Chew Bahir, southern Ethiopia, which is proximal to key fossil sites. Our record documents the potential influence of different episodes of climatic variability on hominin biological and cultural transformation. The appearance of high anatomical diversity in hominin groups coincides with long-lasting and relatively stable humid conditions from ~620,000 to 275,000 yearsbp(episodes 1–6), interrupted by several abrupt and extreme hydroclimate perturbations. A pattern of pronounced climatic cyclicity transformed habitats during episodes 7–9 (~275,000–60,000 yearsbp), a crucial phase encompassing the gradual transition from Acheulean to Middle Stone Age technologies, the emergence ofHomo sapiensin eastern Africa and key human social and cultural innovations. Those accumulative innovations plus the alignment of humid pulses between northeastern Africa and the eastern Mediterranean during high-frequency climate oscillations of episodes 10–12 (~60,000–10,000 yearsbp) could have facilitated the global dispersal ofH. sapiens.

     
    more » « less
  3. Paleoanthropologists have long speculated about the role of environmental change in shaping human evolution in Africa. In recent years, drill cores of late Neogene lacustrine sedimentary rocks have yielded valuable high-resolution records of climatic and ecosystem change. Eastern African Rift sediments (primarily lake beds) provide an extraordinary range of data in close proximity to important fossil hominin and archaeological sites, allowing critical study of hypotheses that connect environmental history and hominin evolution. We review recent drill-core studies spanning the Plio–Pleistocene boundary (an interval of hominin diversification, including the earliest members of our genus Homo and the oldest stone tools), and the Mid–Upper Pleistocene (spanning the origin of Homo sapiens in Africa and our early technological and dispersal history). Proposed drilling of Africa's oldest lakes promises to extend such records back to the late Miocene. ▪ High-resolution paleoenvironmental records are critical for understanding external drivers of human evolution. ▪ African lake basin drill cores play a critical role in enhancing hominin paleoenvironmental records given their continuity and proximity to key paleoanthropological sites. ▪ The oldest African lakes have the potential to reveal a comprehensive paleoenvironmental context for the entire late Neogene history of hominin evolution. 
    more » « less
  4. null (Ed.)
    Modern Homo sapiens engage in substantial ecosystem modification, but it is difficult to detect the origins or early consequences of these behaviors. Archaeological, geochronological, geomorphological, and paleoenvironmental data from northern Malawi document a changing relationship between forager presence, ecosystem organization, and alluvial fan formation in the Late Pleistocene. Dense concentrations of Middle Stone Age artifacts and alluvial fan systems formed after ca. 92 thousand years ago, within a paleoecological context with no analog in the preceding half-million-year record. Archaeological data and principal coordinates analysis indicate that early anthropogenic fire relaxed seasonal constraints on ignitions, influencing vegetation composition and erosion. This operated in tandem with climate-driven changes in precipitation to culminate in an ecological transition to an early, pre-agricultural anthropogenic landscape. 
    more » « less
  5. Hart, John P. (Ed.)
    Amanzi Springs is a series of inactive thermal springs located near Kariega in the Eastern Cape of South Africa. Excavations in the 1960s exposed rare, stratified Acheulian-bearing deposits that were not further investigated over the next 50 years. Reanalysis of the site and its legacy collection has led to a redefined stratigraphic context for the archaeology, a confirmed direct association between Acheulian artefacts and wood, as well as the first reliable age estimates for the site. Thermally transferred optically stimulated luminescence and post-infrared infrared stimulated luminescence dating indicates that the Acheulian deposits from the Amanzi Springs Area 1 spring eye formed during Marine Isotope Stage (MIS) 11 at ~ 404–390 ka. At this time, higher sea levels of ~13-14m would have placed Amanzi Springs around 7 km from a ria that would have formed along what is today the Swartkops River, and which likely led to spring reactivation. This makes the Amanzi Springs Area 1 assemblage an unusual occurrence of a verified late occurring, seaward, open-air Acheulian occupation. The Acheulian levels do not contain any Middle Stone Age (MSA) elements such as blades and points that have been documented in the interior of South Africa at this time. However, a small number of stone tools from the upper layers of the artefact zone, and originally thought of as intrusive, have been dated to ~190 ka, at the transition between MIS 7 to 6, and represent the first potential MSA identified at the site. 
    more » « less