Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The fluvial geomorphology and stratigraphy on the middle Snake River at Bancroft Springs, Idaho, provide evidence for numerous episodes of Snake River aggradation and incision since the Bonneville Flood at ca. 18 ka. A suite of seven terraces ranging from 20–1 m above modern bankfull elevation records multiple cut-and-fill cycles during the latest Pleistocene and Holocene in response to local base-level controls, variations in sediment supply, and hydroclimate change. Radiocarbon and luminescence dating show that the ages of fluvial aggradation generally coincide with increased sediment supply and likely wetter hydroclimate during onset of the Younger Dryas stadial (ca. 13.2 ka), deglaciation and termination of the Younger Dryas stadial (ca. 11.3 ka), Early Holocene cooling (ca. 8.8 ka), and Neoglacial (ca. 4.5, 2.9, 1.1 ka). Six intervening periods of incision and channel stability may also reflect either reduced sediment supply, drier hydroclimate, or both. The terrace chronology can be correlated to a variety of local and regional paleoclimate proxy records and corresponds well with periods of continental- and global-scale rapid climate change during the Holocene. The fluvial record demonstrates the geomorphic response and sensitivity of large river systems to changes in hydroclimate variability, which has important implications for inferring paleoenvironmental conditions in the region.more » « less
-
The development and application of luminescence dating and dosimetry techniques have grown exponentially in the last several decades. Luminescence methods provide age control for a broad range of geological and archaeological contexts and can characterize mineral and glass properties linked to geologic origin, Earth-surface processes, and past exposure to light, heat, and ionizing radiation. The applicable age range for luminescence methods spans the last 500,000 years or more, which covers the period of modern human evolution, and provides context for rates and magnitudes of geological processes, hazards, and climate change. Given the growth in applications and publications of luminescence data, there is a need for unified, community-driven guidance regarding the publication and interpretation of luminescence results. This paper presents a guide to the essential information necessary for publishing and archiving luminescence ages as well as supporting data that is transportable and expandable for different research objectives and publication outlets. We outline the information needed for the interpretation of luminescence data sets, including data associated with equivalent dose, dose rate, age models, and stratigraphic context. A brief review of the fundamentals of luminescence techniques and applications, including guidance on sample collection and insight into laboratory processing and analysis steps, is presented to provide context for publishing and data archiving.more » « less
-
Abstract Analysis of patterns of faulting and hydrogeology, stratigraphic and sedimentologic studies, and luminescence dating of aeolian deposits in China Lake basin provide new perspectives on the origins and development of Late Holocene dunes and sand ramps in the seismically active Indian Wells Valley of eastern California. Aeolian dune and sand sheet deposits were sourced from alluvial material derived from granitic rocks of the south-eastern Sierra Nevada and are concentrated in areas with sand-stabilizing phreatophyte vegetation influenced by high groundwater levels along the active oblique-normal Little Lake and Paxton Ranch faults, which locally form barriers to groundwater flow. Three episodes of sand accumulation are recognized (2.1 ± 0.1 to 2.0 ± 0.1 ka, 1.8 ± 0.2 to 1.6 ± 0.2 ka, and 1.2 ± 0.1 to 0.9 ± 0.1 ka) during conditions in which sediment supplied to the basin during periods of enhanced rainfall and runoff was subsequently reworked by wind into dunes and sand ramps at the transition to more arid periods. Understanding the role tectonics plays in influencing the hydrogeology of seismically active lake basins provides insights to accurately interpret landscape evolution and any inferences made on past hydroclimate variability in a region.more » « less
-
Abstract Late Pleistocene and Early Holocene aeolian deposits in Tasmania are extensive in the present subhumid climate zone but also occur in areas receiving >1000 mm of rain annually. Thermoluminescence, optically stimulated luminescence, and radiocarbon ages indicate that most of the deposits formed during periods of cold climate. Some dunes are remnants of longitudinal desert dunes sourced from now-inundated continental shelves which were previously semi-arid. Others formed near source, often in the form of lunettes east of seasonally-dry lagoons in the previously semi-arid Midlands and southeast of Tasmania, or as accumulations close to floodplains of major rivers, or as sandsheets in exposed areas. Burning of vegetation by the Aboriginal population after 40 ka is likely to have influenced sediment supply. A key site for determining climate variability in southern Tasmania is Maynes Junction which records three periods of aeolian deposition (at ca. 90, 32 and 20 ka), interspersed with periods of hillslope instability. Whether wind speeds were higher than at present during the last glacial period is uncertain, but shells in the Mary Ann Bay sandsheet near Hobart and particle size analysis of the Ainslie dunes in northeast Tasmania suggest stronger winds during the last glacial period than at present.more » « less
-
Abstract India is located at a critical geographic crossroads for understanding the dispersal of Homo sapiens out of Africa and into Asia and Oceania. Here we report evidence for long-term human occupation, spanning the last ~80 thousand years, at the site of Dhaba in the Middle Son River Valley of Central India. An unchanging stone tool industry is found at Dhaba spanning the Toba eruption of ~74 ka (i.e., the Youngest Toba Tuff, YTT) bracketed between ages of 79.6 ± 3.2 and 65.2 ± 3.1 ka, with the introduction of microlithic technology ~48 ka. The lithic industry from Dhaba strongly resembles stone tool assemblages from the African Middle Stone Age (MSA) and Arabia, and the earliest artefacts from Australia, suggesting that it is likely the product of Homo sapiens as they dispersed eastward out of Africa.more » « less
-
Radiocarbon dating of the earliest occupational phases at the Cooper’s Ferry site in western Idaho indicates that people repeatedly occupied the Columbia River basin, starting between 16,560 and 15,280 calibrated years before the present (cal yr B.P.). Artifacts from these early occupations indicate the use of unfluted stemmed projectile point technologies before the appearance of the Clovis Paleoindian tradition and support early cultural connections with northeastern Asian Upper Paleolithic archaeological traditions. The Cooper’s Ferry site was initially occupied during a time that predates the opening of an ice-free corridor (≤14,800 cal yr B.P.), which supports the hypothesis that initial human migration into the Americas occurred via a Pacific coastal route.more » « less
An official website of the United States government
