skip to main content


Title: Fusing UWB and Depth Sensors for Passive and Context-Aware Vital Signs Monitoring
This demonstration presents a working prototype of VitalHub, a practical solution for longitudinal in-home vital signs monitoring. To balance the trade-offs between the challenges related to an individual’s efforts thus compliance, and robustness with vital signs monitoring, we introduce a passive monitoring solution, which is free of any on-body device or cooperative efforts from the user. By fusing the inputs from a pair of co-located UWB and depth sensors, VitalHub achieves robust, passive, context-aware and privacy-preserving sensing. We use a COTS UWB sensor to detect chest wall displacement due to the respiration and heartbeat for vital signs extraction. We use the depth information from Microsoft Kinect to detect and locate the users in the field of view and recognize the activities of the respective users for further analysis.We have tested the prototype extensively in engineering and medical lab environments. We will demonstrate the features and performance of VitalHub using realworld data in comparison with an FDA approved medical device.  more » « less
Award ID(s):
1951880
NSF-PAR ID:
10356451
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE ACM Conference on Connected Health Applications, Systems and Engineering Technologies (CHASE)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This demonstration presents a working prototype of VitalHub, a practical solution for longitudinal in-home vital signs monitoring. To balance the trade-offs between the challenges related to an individual’s efforts thus compliance, and robustness with vital signs monitoring, we introduce a passive monitoring solution, which is free of any on-body device or cooperative efforts from the user. By fusing the inputs from a pair of co-located UWB and depth sensors, VitalHub achieves robust, passive, context-aware and privacy-preserving sensing. We use a COTS UWB sensor to detect chest wall displacement due to the respiration and heartbeat for vital signs extraction. We use the depth information from Microsoft Kinect to detect and locate the users in the field of view and recognize the activities of the respective users for further analysis. We have tested the prototype extensively in engineering and medical lab environments. We will demonstrate the features and performance of VitalHub using real-world data in comparison with an FDA approved medical device. 
    more » « less
  2. Vital signs (e.g., heart and respiratory rate) are indicative for health status assessment. Efforts have been made to extract vital signs using radio frequency (RF) techniques (e.g., Wi-Fi, FMCW, UWB), which offer a non-touch solution for continuous and ubiquitous monitoring without users’ cooperative efforts. While RF-based vital signs monitoring is user-friendly, its robustness faces two challenges. On the one hand, the RF signal is modulated by the periodic chest wall displacement due to heartbeat and breathing in a nonlinear manner. It is inherently hard to identify the fundamental heart and respiratory rates (HR and RR) in the presence of higher order harmonics of them and intermodulation between HR and RR, especially when they have overlapping frequency bands. On the other hand, the inadvertent body movements may disturb and distort the RF signal, overwhelming the vital signals, thus inhibiting the parameter estimation of the physiological movement (i.e., heartbeat and breathing). In this paper, we propose DeepVS, a deep learning approach that addresses the aforementioned challenges from the non-linearity and inadvertent movements for robust RF-based vital signs sensing in a unified manner. DeepVS combines 1D CNN and attention models to exploit local features and temporal correlations. Moreover, it leverages a two-stream scheme to integrate features from both time and frequency domains. Additionally, DeepVS unifies the estimation of HR and RR with a multi-head structure, which only adds limited extra overhead (<1%) to the existing model, compared to doubling the overhead using two separate models for HR and RR respectively. Our experiments demonstrate that DeepVS achieves 80-percentile HR/RR errors of 7.4/4.9 beat/breaths per minute (bpm) on a challenging dataset, as compared to 11.8/7.3 bpm of a non-learning solution. Besides, an ablation study has been conducted to quantify the effectiveness of DeepVS. 
    more » « less
  3. Basic vital signs such as heart and respiratory rates (HR and RR) are essential bio-indicators. Their longitudinal in-home collection enables prediction and detection of disease onset and change, providing for earlier health intervention. In this paper, we propose a robust, non-touch vital signs monitoring system using a pair of co-located Ultra-Wide Band (UWB) and depth sensors. By extensive manual examination, we identify four typical temporal and spectral signal patterns and their suitable vital signs estimators. We devise a probabilistic weighted framework (PWF) that quantifies evidence of these patterns to update the weighted combination of estimator output to track the vital signs robustly. We also design a “heatmap” based signal quality detector to exclude the disturbed signal from inadvertent motions. To monitor multiple co-habiting subjects in-home, we build a two-branch long short-term memory (LSTM) neural network to distinguish between individuals and their activities, providing activity context crucial to disambiguating critical from normal vital sign variability. To achieve reliable context annotation, we carefully devise the feature set of the consecutive skeletal poses from the depth data, and develop a probabilistic tracking model to tackle non-line-of-sight (NLOS) cases. Our experimental results demonstrate the robustness and superior performance of the individual modules as well as the end-to-end system for passive and context-aware vital signs monitoring. 
    more » « less
  4. Non-contact vital signs monitoring (NCVSM) with radio frequency (RF) is attracting increasing attention due to its non-invasive nature. Recent advances in COTS radar technologies accelerate the development of RF-based solutions. While researchers have implemented and demonstrated the feasibility of NCVSM with diverse radar hardware, most efforts have been focused on devising algorithms to extract vital signs, with limited understanding about the effects of radar configurations. The deficiency in such understanding hinders the design of software defined radar (SDR) optimally customized for NCVSM. In this work, we first hypothesize the effects of FMCW radar configurations using signal-to-interference-plus-noise ratio (SINR) based signal modeling, then we conduct extensive experiments with a COTS FMCW radar, TinyRad, to understand how various parameters impact NCVSM performance compared to a medical device. We find that a larger bandwidth or higher transmitting power in general improves vital sign estimation accuracy; however, coherent processing of consecutive chirps (time diversity) or multiple receiving antennas (space diversity) does not improve the performance. Observations on the baseband (BB) signal show that coherent processing contributes to a higher amplitude but similar phase patterns, whose periodic changes are the key in extracting vital signs. 
    more » « less
  5. Using wireless signals to monitor human vital signs, especially heartbeat information, has been intensively studied in the past decade. This non-contact sensing modality can drive various applications from cardiac health, sleep, and emotion management. Under the circumstance of the COVID-19 pandemic, non-contact heart monitoring receives increasingly market demands. However, existing wireless heart monitoring schemes can only detect limited heart activities, such as heart rate, fiducial points, and Seismocardiography (SCG)-like information. In this paper, we present CardiacWave to enable a non-contact high-definition heart monitoring. CardiacWave can provide a full spectrum of Electrocardiogram (ECG)-like heart activities, including the details of P-wave, T-wave, and QRS complex. Specifically, CardiacWave is built upon the Cardiac-mmWave scattering effect (CaSE), which is a variable frequency response of the cardiac electromagnetic field under the mmWave interrogation. The CardiacWave design consists of a noise-resistant sensing scheme to interrogate CaSE and a cardiac activity profiling module for extracting cardiac electrical activities from the interrogation response. Our experiments show that the CardiacWave-induced ECG measures have a high positive correlation with the heart activity ground truth (i.e., measurements from a medical-grade instrument). The timing difference of P-waves, T-waves, and QRS complex is 0.67%, 0.71%, and 0.49%, respectively, and a mean cardiac event difference is within a delay of 5.3 milliseconds. These results indicate that CaridacWave offers high-fidelity and integral heart clinical characteristics. Furthermore, we evaluate the CardiacWave system with participants under various conditions, including heart and breath rates, ages, and heart habits (e.g., tobacco use). 
    more » « less