This demonstration presents a working prototype of VitalHub, a practical solution for longitudinal in-home vital signs monitoring. To balance the trade-offs between the challenges related to an individual’s efforts thus compliance, and robustness with vital signs monitoring, we introduce a passive monitoring solution, which is free of any on-body device or cooperative efforts from the user. By fusing the inputs from a pair of co-located UWB and depth sensors, VitalHub achieves robust, passive, context-aware and privacy-preserving sensing. We use a COTS UWB sensor to detect chest wall displacement due to the respiration and heartbeat for vital signs extraction. We use the depth information from Microsoft Kinect to detect and locate the users in the field of view and recognize the activities of the respective users for further analysis. We have tested the prototype extensively in engineering and medical lab environments. We will demonstrate the features and performance of VitalHub using real-world data in comparison with an FDA approved medical device.
more »
« less
Passive and Context-Aware In-Home Vital Signs Monitoring Using Co-Located UWB-Depth Sensor Fusion
Basic vital signs such as heart and respiratory rates (HR and RR) are essential bio-indicators. Their longitudinal in-home collection enables prediction and detection of disease onset and change, providing for earlier health intervention. In this paper, we propose a robust, non-touch vital signs monitoring system using a pair of co-located Ultra-Wide Band (UWB) and depth sensors. By extensive manual examination, we identify four typical temporal and spectral signal patterns and their suitable vital signs estimators. We devise a probabilistic weighted framework (PWF) that quantifies evidence of these patterns to update the weighted combination of estimator output to track the vital signs robustly. We also design a “heatmap” based signal quality detector to exclude the disturbed signal from inadvertent motions. To monitor multiple co-habiting subjects in-home, we build a two-branch long short-term memory (LSTM) neural network to distinguish between individuals and their activities, providing activity context crucial to disambiguating critical from normal vital sign variability. To achieve reliable context annotation, we carefully devise the feature set of the consecutive skeletal poses from the depth data, and develop a probabilistic tracking model to tackle non-line-of-sight (NLOS) cases. Our experimental results demonstrate the robustness and superior performance of the individual modules as well as the end-to-end system for passive and context-aware vital signs monitoring.
more »
« less
- Award ID(s):
- 1951880
- PAR ID:
- 10439717
- Date Published:
- Journal Name:
- ACM transactions on computing for healthcare
- ISSN:
- 2637-8051
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This demonstration presents a working prototype of VitalHub, a practical solution for longitudinal in-home vital signs monitoring. To balance the trade-offs between the challenges related to an individual’s efforts thus compliance, and robustness with vital signs monitoring, we introduce a passive monitoring solution, which is free of any on-body device or cooperative efforts from the user. By fusing the inputs from a pair of co-located UWB and depth sensors, VitalHub achieves robust, passive, context-aware and privacy-preserving sensing. We use a COTS UWB sensor to detect chest wall displacement due to the respiration and heartbeat for vital signs extraction. We use the depth information from Microsoft Kinect to detect and locate the users in the field of view and recognize the activities of the respective users for further analysis.We have tested the prototype extensively in engineering and medical lab environments. We will demonstrate the features and performance of VitalHub using realworld data in comparison with an FDA approved medical device.more » « less
-
Non-contact vital signs monitoring (NCVSM) with radio frequency (RF) is attracting increasing attention due to its non-invasive nature. Recent advances in COTS radar technologies accelerate the development of RF-based solutions. While researchers have implemented and demonstrated the feasibility of NCVSM with diverse radar hardware, most efforts have been focused on devising algorithms to extract vital signs, with limited understanding about the effects of radar configurations. The deficiency in such understanding hinders the design of software defined radar (SDR) optimally customized for NCVSM. In this work, we first hypothesize the effects of FMCW radar configurations using signal-to-interference-plus-noise ratio (SINR) based signal modeling, then we conduct extensive experiments with a COTS FMCW radar, TinyRad, to understand how various parameters impact NCVSM performance compared to a medical device. We find that a larger bandwidth or higher transmitting power in general improves vital sign estimation accuracy; however, coherent processing of consecutive chirps (time diversity) or multiple receiving antennas (space diversity) does not improve the performance. Observations on the baseband (BB) signal show that coherent processing contributes to a higher amplitude but similar phase patterns, whose periodic changes are the key in extracting vital signs.more » « less
-
While radio frequency (RF) based respiration monitoring for at- home health screening is receiving increasing attention, robustness remains an open challenge. In recent work, deep learning (DL) methods have been demonstrated effective in dealing with non- linear issues from multi-path interference to motion disturbance, thus improving the accuracy of RF-based respiration monitoring. However, such DL methods usually require large amounts of train- ing data with intensive manual labeling efforts, and frequently not openly available. We propose RF-Q for robust RF-based respiration monitoring, using self-supervised learning with an autoencoder (AE) neural network to quantify the quality of respiratory signal based on the residual between the original and reconstructed sig- nals. We demonstrate that, by simply quantifying the signal quality with AE for weighted estimation we can boost the end-to-end (e2e) respiration monitoring accuracy by an improvement ratio of 2.75 compared to a baseline.more » « less
-
Vital signs monitoring has gained increasing attention due to its ability to indicate various human health and well-being conditions. The development of WiFi sensing technologies has made it possible to monitor vital signs using ubiquitous WiFi signals and devices. However, most existing approaches are dedicated to single-person scenarios. A few WiFi sensing approaches can achieve multi-person vital signs monitoring, whereas they are not identity-aware and sensitive to interferences in the environment. In this paper, we propose SpaceBeat, an identity-aware and interference-robust multi-person vital sign monitoring system using commodity WiFi. In particular, our system separates multiple people and locates each person in the spatial domain by leveraging multiple antennas. We analyze the change of signals at the location of each person to achieve identity-aware vital signs monitoring. We also design a contrastive principal component analysis-contrastive learning framework to mitigate interferences caused by other moving people. We evaluate SpaceBeat in various challenging environments, including interference scenarios, non-line-of-sight scenarios, different distances, etc. Our system achieves an average accuracy of 99.1% for breathing monitoring and 97.9% for heartbeat monitoring.more » « less
An official website of the United States government

