Copper-catalyzed azide-alkyne cycloadditions (CuAAC) produce 1,4-disubstituted 1,2,3-triazoles, molecules that have many applications in pharmaceuticals. Click reactions are atom-efficient and produce 1,4-disubstituted triazoles selectively with high yields at room temperature. Byproducts are rarely observed, and the product is easily separated by washing, eliminating the need for purification measures such as column chromatography. We tested various copper complexes for ease of use as homogeneous catalysts at various conditions. The 1,4-disubstituted triazole products were obtained in moderate to excellent yields. The progress of reaction was determined using TLC and IR spectroscopy, and products were characterized by GC-MS and NMR spectroscopy. We found that there is little that changes the outcome of the reaction upon variations in solvent and temperature conditions. However, preliminary results show that the anion of the copper salt used in preparing the copper complexes affects the kinetics of the triazole formation. A significant finding was that copper(II)-catalyzed reactions appear to form product even in the absence of a reducing agent. 
                        more » 
                        « less   
                    
                            
                            New 1,2,3-Triazoles from (R)-Carvone: Synthesis, DFT Mechanistic Study and In Vitro Cytotoxic Evaluation
                        
                    
    
            Aseries of novel 1,4-disubstituted 1,2,3-triazoles were synthesized from an (R)-carvone terminal alkyne derivative via a Cu (I)-catalyzed azide–alkyne cycloaddition reaction using CuSO4,5H2O as the copper (II) source and sodium ascorbate as a reducing agent which reduces Cu (II) into Cu (I). All the newly synthesized 1,2,3-triazoles 9a–h were fully identified on the basis of their HRMS and NMR spectral data and then evaluated for their cell growth inhibition potential by MTS assay against HT-1080 fibrosarcoma, A-549 lung carcinoma, and two breast adenocarcinoma (MCF-7 and MDA-MB-231) cell lines. Compound 9d showed notable cytotoxic effects against the HT-1080 and MCF-7 cells with IC50 values of 25.77 and 27.89 µM, respectively, while compound 9c displayed significant activity against MCF-7 cells with an IC50 value of 25.03 µM. Density functional calculations at the B3LYP/6-31G* level of theory were used to confirm the high reactivity of the terminal alkyne as a dipolarophile. Quantum calculations were also used to investigate the mechanism of both the uncatalyzed and copper (I)-catalyzed azide–alkyne cycloaddition reaction (CuAAC). The catalyzed reaction gives complete regioselectivity via a stepwise mechanism streamlining experimental observations. The calculated free-energy barriers 4.33 kcal/mol and 29.35 kcal/mol for the 1,4- and 1,5-regioisomers, respectively, explain the marked regioselectivity of the CuAAC reaction. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10356529
- Date Published:
- Journal Name:
- Molecules
- Volume:
- 27
- Issue:
- 3
- ISSN:
- 1420-3049
- Page Range / eLocation ID:
- 769
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Sodium pyruvate, a natural intermediate produced during cellular metabolism, is commonly used in buffer solutions and media for biochemical applications. Here we show the use of sodium pyruvate (SP) as a reducing agent in a biocompatible aqueous photoinduced azide–alkyne cycloaddition (CuAAC) reaction. This copper( i )-catalyzed 1,3-dipolar cycloaddition is triggered by SP under UV light irradiation, exhibits oxygen tolerance and temporal control, and provides a convenient alternative to current CuAAC systems, particularly for biomolecular conjugations.more » « less
- 
            Since the inception of carbon fiber-reinforced polymers (CFRPs) they have steadily gained in popularity due to their light weight, high tensile strength and modulus, and environmental toughness. However, curing of CFRPs of the thermosetting type generally must be performed within an autoclave, whose fixed, physical dimensions effectively limit the maximum size of the part. Alternative curing chemistries may potentially eliminate the requirement for an autoclave, which would allow creation of much larger panels. This project seeks to develop a thermoset composite matrix that is radiation-curable using the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction. Previously, Storey et al.(1,2) reported that the azide-modified epoxy resin, di(3-azido-2-hydroxypropyl) ether of bisphenol-A (DAHP-BPA), could be cured by reaction with polyfunctional alkyne crosslinkers under mild conditions using Cu(I) catalysis. In the absence of reducing agents, Cu(II) compounds are catalytically inactive; however, upon exposure to ultraviolet light, they are reduced to Cu(I), which then catalyzes the reaction, allowing it to progress to a high degree of cure at room temperature. Herein, we report the kinetics of photo-induced CuAAC polymerization of the DAHP-BPA and several polyfunctional propargyl amine based crosslinkers, monitored by real-time FTIR as well as mechanical properties of fully cured materials. Polymerizations were studied as a function of Cu(II) compound type, Cu(II) concentration, UV light (365 nm) intensity, and duration of irradiation.more » « less
- 
            null (Ed.)As potential high surface area for selective capture in diagnostic or filtration devices, biotin-cellulose nanofiber membranes were fabricated to demonstrate the potential for specific and bio-orthogonal attachment of biomolecules onto nanofiber surfaces. Cellulose acetate was electrospun and substituted with alkyne groups in either a one- or two-step process. The alkyne reaction, confirmed by FTIR and Raman spectroscopy, was dependent on solvent ratio, time, and temperature. The two-step process maximized alkyne substitution in 10/90 volume per volume ratio (v/v) water to isopropanol at 50 °C after 6 h compared to the one-step process in 80/20 (v/v) at 50 °C after 48 h. Azide-biotin conjugate “clicked” with the alkyne-cellulose via copper-catalyzed alkyne-azide cycloaddition (CuAAC). The biotin-cellulose membranes, characterized by FTIR, SEM, Energy Dispersive X-ray spectroscopy (EDX), and XPS, were used in proof-of-concept assays (HABA (4′-hydroxyazobenzene-2-carboxylic acid) colorimetric assay and fluorescently tagged streptavidin assay) where streptavidin selectively bound to the pendant biotin. The click reaction was specific to alkyne-azide coupling and dependent on pH, ratio of ascorbic acid to copper sulfate, and time. Copper (II) reduction to copper (I) was successful without ascorbic acid, increasing the viability of the click conjugation with biomolecules. The surface-available biotin was dependent on storage medium and time: Decreasing with immersion in water and increasing with storage in air.more » « less
- 
            Homoleptic, tetranuclear copper( i ) pyrazolates {[3,5-( t -Bu) 2 Pz]Cu} 4 , {[3-(CF 3 )-5-( t -Bu)Pz]Cu} 4 , and {[4-Br-3,5-( i -Pr) 2 Pz]Cu} 4 are excellent stand-alone catalysts for azide–alkyne cycloaddition reactions (CuAAC). This work demonstrates that a range of pyrazolates, including those with electron donating and electron-withdrawing groups to sterically demanding substituents on the pyrazolyl backbones, can serve as effective ligand supports on tetranuclear copper catalysts. However, in contrast to the tetramers and also highly fluorinated {[3,5-(CF 3 ) 2 Pz]Cu} 3 , trinuclear copper( i ) complexes such as {[3,5-( i -Pr) 2 Pz]Cu} 3 and {[3-(CF 3 )-5-(CH 3 )Pz]Cu} 3 supported by relatively electron rich pyrazolates display poor catalytic activity in CuAAC. The behavior and degree of aggregation of several of these copper( i ) pyrazolates in solution were examined using vapor pressure osmometry. Copper( i ) complexes such as {[3,5-(CF 3 ) 2 Pz]Cu} 3 and {[3-(CF 3 )-5-( t -Bu)Pz]Cu} 4 with electron withdrawing pyrazolates were found to break up in solution to different degrees producing smaller aggregates while those such as {[3,5-( i -Pr) 2 Pz]Cu} 3 and {[3,5-( t -Bu) 2 Pz]Cu} 4 with electron rich pyrazolates remain intact. In addition, kinetic experiments were performed to understand the unusual activity of tetranuclear copper( i ) pyrazolate systems.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    