We present here a new system, in which signing avatars (computer-animated virtual humans built from motion capture recordings) teach introductory American Sign Language (ASL) in an immersive virtual environment. The system is called Signing Avatars & Immersive Learning (SAIL). The significant contributions of this work are 1) the use of signing avatars, built from state-of-the-art motion capture recordings of a native signer; 2) the integration with LEAP gesture tracking hardware, allowing the user to see his or her own movements within the virtual environment; 3) the development of appropriate introductory ASL vocabulary, delivered in semi-interactive lessons; and 4) the 3D environment in which a user accesses the system.
more »
« less
Signing Avatars in a New Dimension: Challenges and Opportunities in Virtual Reality
With improved and more easily accessible technology, immersive virtual reality (VR) head-mounted devices have become more ubiquitous. As signing avatar technology improves, virtual reality presents a new and relatively unexplored application for signing avatars. This paper discusses two primary ways that signed language can be represented in immersive virtual spaces: 1) Third-person, in which the VR user sees a character who communicates in signed language; and 2) First-person, in which the VR user produces signed content themselves, tracked by the head-mounted device and visible to the user herself (and/or to other users) in the virtual environment. We will discuss the unique affordances granted by virtual reality and how signing avatars might bring accessibility and new opportunities to virtual spaces. We will then discuss the limitations of signed content in virtual reality concerning virtual signers shown from both third- and first-person perspectives.
more »
« less
- PAR ID:
- 10356532
- Editor(s):
- Efthimiou, E.; Fotinea, S-E.; Hanke, T.; McDonald, J.; Shterionov, D.; Wolfe, R.
- Date Published:
- Journal Name:
- Proceedings of the 7th International Workshop on Sign Language Translation and Avatar Technology (SLTAT 7)
- Page Range / eLocation ID:
- 85-90
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Immersive Analytics (IA) and consumer adoption of augmented reality (AR) and virtual reality (VR) head-mounted displays (HMDs) are both rapidly growing. When used in conjunction, stereoscopic IA environments can offer improved user understanding and engagement; however, it is unclear how the choice of stereoscopic display impacts user interactions within an IA environment. This paper presents a pilot study that examines the impact of stereoscopic display choice on object manipulation and environmental navigation using consumeravailable AR and VR HMDs. Our observations indicate that the display can impact how users manipulate virtual content and how they navigate the environment.more » « less
-
Extended reality (XR) technologies, such as virtual reality (VR) and augmented reality (AR), provide users, their avatars, and embodied agents a shared platform to collaborate in a spatial context. Although traditional face-to-face communication is limited by users’ proximity, meaning that another human’s non-verbal embodied cues become more difficult to perceive the farther one is away from that person, researchers and practitioners have started to look into ways to accentuate or amplify such embodied cues and signals to counteract the effects of distance with XR technologies. In this article, we describe and evaluate the Big Head technique, in which a human’s head in VR/AR is scaled up relative to their distance from the observer as a mechanism for enhancing the visibility of non-verbal facial cues, such as facial expressions or eye gaze. To better understand and explore this technique, we present two complimentary human-subject experiments in this article. In our first experiment, we conducted a VR study with a head-mounted display to understand the impact of increased or decreased head scales on participants’ ability to perceive facial expressions as well as their sense of comfort and feeling of “uncannniness” over distances of up to 10 m. We explored two different scaling methods and compared perceptual thresholds and user preferences. Our second experiment was performed in an outdoor AR environment with an optical see-through head-mounted display. Participants were asked to estimate facial expressions and eye gaze, and identify a virtual human over large distances of 30, 60, and 90 m. In both experiments, our results show significant differences in minimum, maximum, and ideal head scales for different distances and tasks related to perceiving faces, facial expressions, and eye gaze, and we also found that participants were more comfortable with slightly bigger heads at larger distances. We discuss our findings with respect to the technologies used, and we discuss implications and guidelines for practical applications that aim to leverage XR-enhanced facial cues.more » « less
-
The use of virtual humans (i.e., avatars) holds the potential for interactive, automated interaction in domains such as remote communication, customer service, or public announcements. For signed language users, signing avatars could potentially provide accessible content by sharing information in the signer's preferred or native language. As the development of signing avatars has gained traction in recent years, researchers have come up with many different methods of creating signing avatars. The resulting avatars vary widely in their appearance, the naturalness of their movements, and facial expressions—all of which may potentially impact users' acceptance of the avatars. We designed a study to test the effects of these intrinsic properties of different signing avatars while also examining the extent to which people's own language experiences change their responses to signing avatars. We created video stimuli showing individual signs produced by (1) a live human signer (Human), (2) an avatar made using computer-synthesized animation (CS Avatar), and (3) an avatar made using high-fidelity motion capture (Mocap avatar). We surveyed 191 American Sign Language users, including Deaf ( N = 83), Hard-of-Hearing ( N = 34), and Hearing ( N = 67) groups. Participants rated the three signers on multiple dimensions, which were then combined to form ratings of Attitudes, Impressions, Comprehension, and Naturalness. Analyses demonstrated that the Mocap avatar was rated significantly more positively than the CS avatar on all primary variables. Correlations revealed that signers who acquire sign language later in life are more accepting of and likely to have positive impressions of signing avatars. Finally, those who learned ASL earlier were more likely to give lower, more negative ratings to the CS avatar, but we did not see this association for the Mocap avatar or the Human signer. Together, these findings suggest that movement quality and appearance significantly impact users' ratings of signing avatars and show that signed language users with earlier age of ASL acquisition are the most sensitive to movement quality issues seen in computer-generated avatars. We suggest that future efforts to develop signing avatars consider retaining the fluid movement qualities integral to signed languages.more » « less
-
Guidelines on Successfully Porting Non-Immersive Games to Virtual Reality: A Case Study in MinecraftVirtual reality games have grown rapidly in popularity since the first consumer VR head-mounted displays were released in 2016, however comparatively little research has explored how this new medium impacts the experience of players. In this paper, we present a study exploring how user experience changes when playing Minecraft on the desktop and in immersive virtual reality. Fourteen players completed six 45 minute sessions, three played on the desktop and three in VR. The Gaming Experience Questionnaire, the i-Group presence questionnaire, and the Simulator Sickness Questionnaire were administered after each session, and players were interviewed at the end of the experiment. Participants strongly preferred playing Minecraft in VR, despite frustrations with using teleporation as a travel technique and feelings of simulator sickness. Players enjoyed using motion controls, but still continued to use indirect input under certain circumstances. This did not appear to negatively impact feelings of presence. We conclude with four lessons for game developers interested in porting their games to virtual reality.more » « less