skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1839379

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Efthimiou, E.; Fotinea, S-E.; Hanke, T.; McDonald, J.; Shterionov, D.; Wolfe, R. (Ed.)
    With improved and more easily accessible technology, immersive virtual reality (VR) head-mounted devices have become more ubiquitous. As signing avatar technology improves, virtual reality presents a new and relatively unexplored application for signing avatars. This paper discusses two primary ways that signed language can be represented in immersive virtual spaces: 1) Third-person, in which the VR user sees a character who communicates in signed language; and 2) First-person, in which the VR user produces signed content themselves, tracked by the head-mounted device and visible to the user herself (and/or to other users) in the virtual environment. We will discuss the unique affordances granted by virtual reality and how signing avatars might bring accessibility and new opportunities to virtual spaces. We will then discuss the limitations of signed content in virtual reality concerning virtual signers shown from both third- and first-person perspectives. 
    more » « less
  2. null (Ed.)
    This paper presents a holistic system to scale up the teaching and learning of vocabulary words of American Sign Language (ASL). The system leverages the most recent mixed-reality technology to allow the user to perceive her own hands in an immersive learning environment with first- and third-person views for motion demonstration and practice. Precise motion sensing is used to record and evaluate motion, providing real-time feedback tailored to the specific learner. As part of this evaluation, learner motions are matched to features derived from the Hamburg Notation System (HNS) developed by sign-language linguists. We develop a prototype to evaluate the efficacy of mixed-reality-based interactive motion teaching. Results with 60 participants show a statistically significant improvement in learning ASL signs when using our system, in comparison to traditional desktop-based, non-interactive learning. We expect this approach to ultimately allow teaching and guided practice of thousands of signs. 
    more » « less
  3. We present here a new system, in which signing avatars (computer-animated virtual humans built from motion capture recordings) teach introductory American Sign Language (ASL) in an immersive virtual environment. The system is called Signing Avatars & Immersive Learning (SAIL). The significant contributions of this work are 1) the use of signing avatars, built from state-of-the-art motion capture recordings of a native signer; 2) the integration with LEAP gesture tracking hardware, allowing the user to see his or her own movements within the virtual environment; 3) the development of appropriate introductory ASL vocabulary, delivered in semi-interactive lessons; and 4) the 3D environment in which a user accesses the system. 
    more » « less