skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Distributed Framework for Accelerating Training of Deep Learning Models through Prioritization
Machine learning models such as deep neural networks have been shown to be successful in solving a wide range of problems. Training such a model typically requires stochastic gradient descent, and the process is time-consuming and expensive in terms of computing resources. In this paper, we propose a distributed framework that supports the prioritized execution of the gradient computation. Our proposed distributed framework identifies important data points through computing or estimating the priority for each data point. We evaluate the proposed distributed framework with several machine learning models including multi-layer perceptron (MLP) and convolutional neural networks (CNN). Our experimental results show that prioritized SGD accelerates the training of machine learning models by as much as 1.6X over that of the mini-batch SGD. Further, the distributed framework scales linearly with the number of workers.  more » « less
Award ID(s):
1908536
PAR ID:
10356565
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE International Conference on Cloud Engineering (IC2E)
Page Range / eLocation ID:
201 to 209
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Distributed stochastic gradient descent (SGD) is essential for scaling the machine learning algorithms to a large number of computing nodes. However, the infrastructures variability such as high communication delay or random node slowdown greatly impedes the performance of distributed SGD algorithm, especially in a wireless system or sensor networks. In this paper, we propose an algorithmic approach named Overlap Local-SGD (and its momentum variant) to overlap communication and computation so as to speedup the distributed training procedure. The approach can help to mitigate the straggler effects as well. We achieve this by adding an anchor model on each node. After multiple local updates, locally trained models will be pulled back towards the synchronized anchor model rather than communicating with others. Experimental results of training a deep neural network on CIFAR-10 dataset demonstrate the effectiveness of Overlap Local-SGD. We also provide a convergence guarantee for the proposed algorithm under non-convex objective functions. 
    more » « less
  2. Federated Learning (FL) has attracted increasing attention in recent years. A leading training algorithm in FL is local SGD, which updates the model parameter on each worker and averages model parameters across different workers only once in a while. Although it has fewer communication rounds than the classical parallel SGD, local SGD still has large communication overhead in each communication round for large machine learning models, such as deep neural networks. To address this issue, we propose a new communicationefficient distributed SGD method, which can significantly reduce the communication cost by the error-compensated double compression mechanism. Under the non-convex setting, our theoretical results show that our approach has better communication complexity than existing methods and enjoys the same linear speedup regarding the number of workers as the full-precision local SGD. Moreover, we propose a communication-efficient distributed SGD with momentum, which also has better communication complexity than existing methods and enjoys a linear speedup with respect to the number of workers. At last, extensive experiments are conducted to verify the performance of our proposed methods. 
    more » « less
  3. Deep learning architectures are usually proposed with millions of parameters, resulting in a memory issue when training deep neural networks with stochastic gradient descent type methods using large batch sizes. However, training with small batch sizes tends to produce low quality solution due to the large variance of stochastic gradients. In this paper, we tackle this problem by proposing a new framework for training deep neural network with small batches/noisy gradient. During optimization, our method iteratively applies a proximal type regularizer to make loss function strongly convex. Such regularizer stablizes the gradient, leading to better training performance. We prove that our algorithm achieves comparable convergence rate as vanilla SGD even with small batch size. Our framework is simple to implement and can be potentially combined with many existing optimization algorithms. Empirical results show that our method outperforms SGD and Adam when batch size is small. Our implementation is available at https://github.com/huiqu18/TRAlgorithm. 
    more » « less
  4. Large-scale machine learning training, in particular, distributed stochastic gradient descent, needs to be robust to inherent system variability such as node straggling and random communication delays. This work considers a distributed training framework where each worker node is allowed to perform local model updates and the resulting models are averaged periodically. We analyze the true speed of error convergence with respect to wall-clock time (instead of the number of iterations) and analyze how it is affected by the frequency of averaging. The main contribution is the design of ADACOMM, an adaptive communication strategy that starts with infrequent averaging to save communication delay and improve convergence speed, and then increases the communication frequency in order to achieve a low error floor. Rigorous experiments on training deep neural networks show that ADACOMM can take 3x less time than fully synchronous SGD and still reach the same final training loss. 
    more » « less
  5. Modern machine learning frameworks can train neural networks using multiple nodes in parallel, each computing parameter updates with stochastic gradient descent (SGD) and sharing them asynchronously through a central parameter server. Due to communication overhead and bottlenecks, the total throughput of SGD updates in a cluster scales sublinearly, saturating as the number of nodes increases. In this paper, we present a solution to predicting training throughput from profiling traces collected from a single-node configuration. Our approach is able to model the interaction of multiple nodes and the scheduling of concurrent transmissions between the parameter server and each node. By accounting for the dependencies between received parts and pending computations, we predict overlaps between computation and communication and generate synthetic execution traces for configurations with multiple nodes. We validate our approach on TensorFlow training jobs for popular image classification neural networks, on AWS and on our in-house cluster, using nodes equipped with GPUs or only with CPUs. We also investigate the effects of data transmission policies used in TensorFlow and the accuracy of our approach when combined with optimizations of the transmission schedule. 
    more » « less