skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A self-adaptive theta scheme using discontinuity aware quadrature for solving conservation laws
Abstract We present a discontinuity aware quadrature (DAQ) rule and use it to develop implicit self-adaptive theta (SATh) schemes for the approximation of scalar hyperbolic conservation laws. Our SATh schemes require the solution of a system of two equations, one controlling the cell averages of the solution at the time levels, and the other controlling the space-time averages of the solution. These quantities are used within the DAQ rule to approximate the time integral of the hyperbolic flux function accurately, even when the solution may be discontinuous somewhere over the time interval. The result is a finite volume scheme using the theta time stepping method, with theta defined implicitly (or self-adaptively). Two schemes are developed, self-adaptive theta upstream weighted (SATh-up) for a monotone flux function using simple upstream stabilization, and self-adaptive theta Lax–Friedrichs (SATh-LF) using the Lax–Friedrichs numerical flux. We prove that DAQ is accurate to second order when there is a discontinuity in the solution and third order when it is smooth. We prove that SATh-up is unconditionally stable, provided that theta is set to be at least 1/2 (which means that SATh can be only first order accurate in general). We also prove that SATh-up satisfies the maximum principle, and is total variation diminishing under appropriate monotonicity and boundary conditions. General flux functions require the SATh-LF scheme, so we assess its accuracy through numerical examples in one and two space dimensions. These results suggest that SATh-LF is also stable and satisfies the maximum principle (at least at reasonable Courant-Friedrichs-Lewy numbers). Compared to the solutions of finite volume schemes using Crank–Nicolson and backward Euler time stepping, SATh-LF solutions often approach the accuracy of the former, but without oscillation, and they are numerically less diffuse than the latter.  more » « less
Award ID(s):
1912735
PAR ID:
10356572
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IMA Journal of Numerical Analysis
ISSN:
0272-4979
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We develop implicit-explicit (IMEX) schemes for neutrino transport in a background material in the context of a two-moment model that evolves the angular moments of a neutrino phase-space distribution function. Considering the upper and lower bounds that are introduced by Pauli’s exclusion principle on the moments, an algebraic moment closure based on Fermi-Dirac statistics and a convex-invariant time integrator both are demanded. A finite-volume/first-order discontinuous Galerkin(DG) method is used to illustrate how an algebraic moment closure based on Fermi-Dirac statistics is needed to satisfy the bounds. Several algebraic closures are compared with these bounds in mind, and the Cernohorsky and Bludman closure, which satisfies the bounds, is chosen for our IMEX schemes. For the convex-invariant time integrator, two IMEX schemes named PD-ARS have been proposed. PD-ARS denotes a convex-invariant IMEX Runge-Kutta scheme that is high-order accurate in the streaming limit, and works well in the diffusion limit. Our two PD-ARS schemes use second- and third-order, explicit, strong-stability-preserving Runge-Kutta methods as their explicit part, respectively, and therefore are second- and third-order accurate in the streaming limit, respectively. The accuracy and convex-invariance of our PD-ARS schemes are demonstrated in the numerical tests with a third-order DG method for spatial discretization and a simple Lax-Friedrichs flux. The method has been implemented in our high-order neutrino-radiation hydrodynamics (thornado) toolkit. We show preliminary results employing tabulated neutrino opacities. 
    more » « less
  2. Recent decades have seen increasing concerns regarding air quality in housing locations. This study proposes a predictive continuum dynamic user-optimal model with combined choice of housing location, destination, route, and departure time. A traveler’s choice of housing location is modeled by a logit-type demand distribution function based on air quality, housing rent, and perceived travel costs. Air quality, or air pollutants, within the modeling region are governed by the vehicle-emission model and the advection-diffusion equation for dispersion. In this study, the housing-location problem is formulated as a fixed-point problem and the predictive continuum dynamic user-optimal model with departure-time consideration is formulated as a variational inequality problem. The Lax-Friedrichs scheme, the fast-sweeping method, the Goldstein-Levitin-Polyak projection algorithm, and self-adaptive successive averages are adopted to discretize and solve these problems. A numerical example is given to demonstrate the characteristics of the proposed housing-location choice problem with consideration of air quality and to demonstrate the effectiveness of the solution algorithms. 
    more » « less
  3. Abstract The Allen‐Cahn equation satisfies the maximum bound principle, that is, its solution is uniformly bounded for all time by a positive constant under appropriate initial and/or boundary conditions. It has been shown recently that the time‐discrete solutions produced by low regularity integrators (LRIs) are likewise bounded in the infinity norm; however, the corresponding fully discrete error analysis is still lacking. This work is concerned with convergence analysis of the fully discrete numerical solutions to the Allen‐Cahn equation obtained based on two first‐order LRIs in time and the central finite difference method in space. By utilizing some fundamental properties of the fully discrete system and the Duhamel's principle, we prove optimal error estimates of the numerical solutions in time and space while the exact solution is only assumed to be continuous in time. Numerical results are presented to confirm such error estimates and show that the solution obtained by the proposed LRI schemes is more accurate than the classical exponential time differencing (ETD) scheme of the same order. 
    more » « less
  4. Abstract We consider a family of variable time-stepping Dahlquist-Liniger-Nevanlinna (DLN) schemes, which is unconditionally non-linear stable and second order accurate, for the Allen-Cahn equation. The finite element methods are used for the spatial discretization. For the non-linear term, we combine the DLN scheme with two efficient temporal algorithms: partially implicit modified algorithm and scalar auxiliary variable algorithm. For both approaches, we prove the unconditional, long-term stability of the model energy under any arbitrary time step sequence. Moreover, we provide rigorous error analysis for the partially implicit modified algorithm with variable time-stepping. Efficient time-adaptive algorithms based on these schemes are also proposed. Several one- and two-dimensional numerical tests are presented to verify the properties of the proposed time-adaptive DLN methods. 
    more » « less
  5. We consider high-order discretizations of a Cauchy problem where the evolution operator comprises a hyperbolic part and a parabolic part with diffusion and stiff relaxation terms. We propose a technique that makes every implicit-explicit (IMEX) time stepping scheme invariant-domain preserving and mass conservative. Following the ideas introduced in Part I on explicit Runge--Kutta schemes, the IMEX scheme is written in incremental form. At each stage, we first combine a low-order and a high-order hyperbolic update using a limiting operator, then we combine a low-order and a high-order parabolic update using another limiting operator. The proposed technique, which is agnostic to the space discretization, allows one to optimize the time step restrictions induced by the hyperbolic substep. To illustrate the proposed methodology, we derive four novel IMEX methods with optimal efficiency. All the implicit schemes are singly diagonal. One of them is A-stable and the other three are L-stable. The novel IMEX schemes are evaluated numerically on systems of stiff ordinary differential equations and nonlinear conservation equations. 
    more » « less