skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: NSF RED: Supporting Convergence Development through Structural Changes to an ECE Program
This NSF Grantees poster discusses an early phase Revolutionizing Engineering Departments (RED) project which is designed to address preparing engineering students to address large scale societal problems, the solutions of which integrate multiple disciplinary perspectives. These types of problems are often termed “convergent problems”. The idea of convergence captures how different domains of expertise contribute to solving a problem, but also the value of the network of connections between areas of knowledge that is built in undertaking such activities. While most existing efforts at convergence focus at the graduate and post-graduate levels, this project supports student development of capabilities to address convergent problems in an undergraduate disciplinary-based degree program in electrical and computer engineering. This poster discusses some of the challenges faced in implementing such learning including how to decouple engineering topics from societal concerns in ways that are relevant to undergraduate students yet retain aspects of convergence, negotiations between faculty on ways to balance discipline-specific skills with the breadth required for systemic understanding, and challenges in integrating relevant projects into courses with different faculty and instructional learning goals. One of the features of the project is that it builds on ideas from Communities of Transformation by basing activities on a coherent philosophical model that guides theories of change. The project has adopted Amartya Sen’s Development as Freedom or capabilities framework as the organizing philosophy. In this model the freedom for individuals to develop capabilities they value is viewed as both the means and end of development. The overarching goal of the project is then for students to build personalized frameworks based on their value systems which allow them to later address complex, convergent problems. Framework development by individual students is supported in the project through several activities: modifying grading practices to provide detailed feedback on skills that support convergence, eliciting self-narratives from students about their pathways through courses and projects with the goal of developing reflection, and carefully integrating educational software solutions that can reduce some aspects of faculty workload which is hypothesized to enable faculty to focus efforts on integrating convergent projects throughout the curriculum. The poster will present initial results on the interventions to the program including grading, software integration, projects, and narratives. The work presented will also cover an ethnographic study of faculty practices which serves as an early-stage baseline to calibrate longer-term changes.  more » « less
Award ID(s):
2022271
PAR ID:
10356585
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
American Society for Engineering Education Annual Conference and Exhibition
Page Range / eLocation ID:
38236
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper describes and discusses several recent faculty-student research activities at Lincoln University (PA), an HBCU. Specifically, it makes connections between NSF-sponsored faculty research and the projects that several undergraduate Engineering Science and Physics students have been working on. The Engineering Science is a relatively new major at Lincoln. New research experiences are particularly useful, so integrated learning is an attractive methodology for some of the engineering courses. The paper includes several case-studies detailing the student projects in connection to their academic progress. It also suggests the opportunities for our students upon graduation. The key findings of this study are that the research activities enabled by this research initiation grant are sufficiently diverse; they provide necessary supplements for the courses taught to students who specialize in electrical engineering. Research experiences that students get through this project are particularly useful for their future graduate studies and industry careers. 
    more » « less
  2. The University of Central Florida (UCF) trains future engineers and scientists for research-oriented careers through a number of programs and initiatives. One of the most recent is a Research Experiences for Undergraduates (REU) site based on next-generation transportation and energy housed within the Center for Advanced Turbomachinery and Energy Research (CATER) and the Department of Mechanical and Aerospace Engineering (MAE). The site unites eleven multi-disciplinary research projects around HYpersonic, Propulsive, Energetic, and Reusable Platforms (HYPER). A key goal of HYPER is to equip and motivate undergraduate students to pursue graduate school and/or a research-oriented career, particularly across a diverse student participant cohort. The site has held two cohorts, engaging 25 students in a ten-week intensive experience, conducting research under the guidance of faculty mentors and graduate students. Students explored career options through industry tours, professional development seminars, and mentor-led research seminars. This paper reports the program impacts on the students and discusses several lessons learned across the cohorts. 
    more » « less
  3. Andrew McNamara, Sam Divall (Ed.)
    Engineering centre research faculty and staff value the importance of performing educational outreach and mentoring graduate students. However, these activities are often less structured than research projects, which leads to variable and less effective results. The geotechnical group at the University of California, Davis (UC Davis), which includes research faculty and staff at the Center for Geotechnical Modeling and the Center for Bio-mediated and Bio-inspired Geotechnics, developed a Ladder Mentoring Model (LMM) for mentoring graduate students in academic environments to enrich graduate student development while minimizing additional demands on centre personnel. The LMM is a combination of several existing mentoring models and relies on six core principles where the outcome is students receiving guidance from a variety of mentors with different areas and levels of expertise or experience. This paper provides a brief overview of the UC Davis LMM and describes how it is integrated into three critical areas of graduate student development: technical training, professional skills, and educational outreach. 
    more » « less
  4. To pursue transdisciplinary education, bringing together different disciplinary perspectives is necessary. As two graduate researchers, in engineering technology and anthropology, on a National Science Foundation (NSF) Improving Undergraduate STEM Education research project, we want to embody and explore our role in the journey to pursue transdisciplinary education. Our familiarity with higher education as students, our different disciplinary backgrounds and lived experiences, and our training as an engineering technology educator and a social scientist contribute greatly to the advancement of understanding the project. Harnessing our combined expertise enables us to see collaborative co-teaching, group learning, and student engagement in new ways. Often transdisciplinary education research is approached from siloed disciplines or from a single perspective and not inclusive of graduate students' perspectives. We find ourselves working on a collaborative cross-college project between three different colleges, Business, Engineering Technology, and Liberal Arts, where faculty and students are co-teaching and co-learning in a series of design and innovation courses. A key element of this project is gathering and using stakeholder data from students, faculty, and administrators. Midway through our three-year project, the NSF project’s external reviewer highlighted the crucial value added of having graduate researchers looking at transforming higher education towards transdisciplinarity. With that in mind, we offer some guiding thoughts about collaborative research among graduate students and faculty from different academic disciplines. This includes tips on how we collaborated in coding, analysis, and data presentations. Using project examples, we will discuss how we used tools for collaboration such as NVivo Teams and Microsoft Teams; these platforms aided in contributing to the iterative research design of this project and research outputs. Our process was strengthened by active participation in project meetings with faculty, educational community events, and data review sessions to reach data consensus. We have noticed how transdisciplinarity can transform undergraduate learning and encourage cross-college faculty collaboration. We will reflect on the significance of collaboration at all levels of higher education. Furthermore, this experience has set us on the path to becoming transdisciplinary scholars ourselves. 
    more » « less
  5. The purpose of this WIP research paper is to briefly consider the basis of higher education’s current grading system and to discuss an implemented grading structure based on a human development framework which was part of a cultural shift within the department. The letter-grade marking system is relatively new compared to the institution of higher education and brings with it a secondary effect of an “A” ranking conveying significant value and meaning to the interpreter. Students (and faculty) bring their own interpretation of what it means to be an ‘A’ student and connect this to their personal identity. The shift to letter-based grades coincided with influx of capital into American universities and an industry need for more research. Providing such letter-based sortings is often a required part of the instructional contract with most university structures. Grading systems at their best may provide helpful developmental feedback to learners and reward valued behaviors, but they are also punitive and contribute to shame and feelings of alienation or un-belonging. Grading itself is a strong voice of the faculty. While a curriculum guides the overall experience of students, grades themselves are the “coin of the realm” in terms of directly conveying students what faculty value. These weightings of various activities and what work is and is not graded tacitly tell students where faculty expect students to spend their time and effort. Who can be an engineer is then restricted to those who show aptitude in predefined outcomes and can successfully navigate the grading structures given to them. We ask if it is possible to grade across a curriculum in a way that increases opportunities for student agency and can convey to students the multi-faceted nature of being an engineer. While technical skills and knowledge are important, they are only one aspect of being an engineer. We introduce an attempted grading structure that includes six factors of engineering development used across each assignment within a first year engineering course. This change informed ongoing efforts to align grading approaches that place value on student agency in student development and informed an educational model based on the Capability Approach. 
    more » « less