skip to main content

Title: Reconnecting Students and Faculty to Maximize Academic Integrity and Minimize Student Stress in the Virtual Classroom
ABSTRACT The article documents faculty experiences with the shift online due to the pandemic and provides recommendations to science, technology, engineering, and mathematics (STEM) instructors. Over 100 faculty members were surveyed on these topics and contrasted with previously reported student experiences. The online shift changed how faculty administered exams, ran courses, and acted to ensure academic integrity. For example, when exams went online, 73% of faculty reported spending more time preventing cheating. Concerning academic integrity and stress, faculty and students agreed with the exception of a few notable disconnects. Students reported greater workloads in online classes, while faculty maintained that the shift online did not change student workloads. Students perceived more online cheating than faculty. Overall, there seems to be a significant disconnect regarding faculty not realizing how much their actions may encourage or discourage cheating. Few faculty (<15%) indicated that being a tough grader or having test times too short is a motivating factor, but over 55% of students reported that these motivate students to cheat. Conversely, over 60% of students reported respect for their professors discourages them from cheating, while only 37% of faculty indicated the same. Over 70% of faculty and students indicated that fear of getting more » caught is a deterrent to cheating. Recommendations to reconnect include (i) faculty should use the finding that the number one deterrent of cheating is fear of getting caught; and (ii) faculty should maintain students’ respect by being clear or overestimating workload requirements, carefully adjusting time for online exams, and setting clear expectations with uncomplicated exam questions consistent with the material taught. « less
; ; ; ; ;
Parks, Samantha T.
Award ID(s):
Publication Date:
Journal Name:
Journal of Microbiology & Biology Education
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The article documents students’ experiences with the shift online at the onset of the COVID-19 pandemic and provides informed recommendations to STEM instructors regarding academic integrity and student stress. Over 500 students were surveyed on these topics, including an open-ended question. Students experienced more stress and perceived a greater workload in online courses and therefore preferred in-person courses overall. Personal awareness of cheating during online exams is positively correlated with the proportion of cheating a student perceives. Fear of getting caught is the best cheating deterrent while getting a better grade makes cheating most enticing. Randomization of questions and answer choices is perceived as a highly effective tool to reduce cheating and is reported as the least stress-inducing method. Inability to backtrack and time limits cause students the most stress. Students report that multiple choice questions are the least effective question type to discourage cheating and oral exam questions cause the most stress. Use of camera and lockdown browser or being video- and audio- recorded caused the majority of student stress. Yet, nearly 60% agree that the combination of camera and lockdown browser is an effective deterrent. Recommendations: (i) Be transparent regarding academic dishonesty detection methods and penalties. (ii)more »Use online invigilating tools. (iii) Synchronize exams and (iv) randomize exam questions. (v) Allow backtracking. (vi) Avoid converting in-person exams to online exams; instead, explore new ways of designing exams for the online environment.« less
  2. In order be successful, engineers must ask their clients, coworkers, and bosses questions. Asking questions can improve work quality and make the asker appear smarter. However, people often hesitate to ask questions for fear of seeming incompetent or inferior. This study investigates: what characteristics and experiences are connected to engineering students’ perceptions of asking questions? We analyzed data from a survey of over a thousand engineering undergraduates across a nationally representative sample of 27 U.S. engineering schools. We focused on three dependent variables: question-asking self-efficacy (how confident students are in their ability to ask a lot of questions), social outcome expectations around asking questions (whether students believe if they ask a lot of questions, they will earn the respect of their colleagues), and career outcome expectations (whether they believe asking a lot of questions will hurt their chances for getting ahead at work). We were surprised to find that question-asking self-efficacy or outcome expectations did not significantly vary by gender, under-represented minority status, and school size. However, students with high question-asking self-efficacy and outcome expectations were more likely to have engaged in four extracurricular experiences: participating in an internship or co-op, conducting research with a faculty member, participating in amore »student group, and holding a leadership role in an organization or student group. The number of different types of these extracurricular activities a student engaged in correlated with question-asking self-efficacy and positive outcome expectations around asking questions. The results illustrate the relationship between extracurricular activities and students’ self-efficacy and behavior outcome expectations. The college experience is more than just formal academic classes. Students learn from experiences that occur after class or during the summer, and ideally these experiences complement class-derived skills and confidence in asking questions.« less
  3. Miller, Eva (Ed.)
    The recent outbreak of COVID-19, considered as being a lethal pandemic by the World Health Organization, has caused profound changes in the educational system within the U.S and across the world. Overnight, universities and their educators had to switch to a largely online teaching format, which challenged their capacity to deliver learning content effectively to STEM students. Students were forced to adapt to a new learning environment in the midst of challenges in their own lives due to the COVID-19 effects on society and professional expectations. The main purpose of this paper is to investigate faculty perceptions of STEM student experiences during COVID-19. Through a qualitative methodology consisting of one-hour zoom interviews administered to 32 STEM faculty members from six U.S. Universities nationwide, faculty narratives regarding student and faculty experiences during COVID-19 were obtained. The qualitative research approach involved identifying common themes across faculty experiences and views in these narratives. Some of the categories of emerging themes associated with faculty perceptions on student and faculty experiences included: student struggles and challenges, student cheating and the online environment, faculty and student adaptability, faculty and student needs and support, and university resources and support. Best practices to facilitate online teaching and learningmore »employed by STEM faculty were also discussed. Key findings revealed that students and faculty had both positive and negative experiences during COVID-19. Additionally, there was a greater need for consistent policies to improve the online student learning experiences. Recommendations to improve STEM student experiences include increased institutional resources and collaboration between faculty and the university administrators to provide a coherent online learning environment. Preliminary findings also provide insights to enhance institutional adaptability and resilience for improving STEM student experiences during future pandemics. Future research should continue to explore institutional adaptation strategies that enhance STEM student learning during pandemics.« less
  4. This work-in-progress paper presents an innovative practice of using oral exams to maintain academic integrity and promote student engagement in large-enrollment engineering courses during remote instruction. With the abrupt and widespread transition to distance learning and assessment brought on by the COVID-19 pandemic, there has been a registered upsurge in academic integrity violations globally. To address the challenge of compromised integrity, in the winter quarter of 2021 we have implemented oral exams across six mostly high-enrollment mechanical and electrical engineering undergraduate courses. We present our oral exam design parameters in each of the courses and discuss how oral exams relate to academic integrity, student engagement, stress, and implicit bias. We also address the challenge of scalability, as most of our oral exams were implemented in large classes, where academic integrity and student-instructor disconnection have generally gotten disproportionately worse during remote learning. Our survey results indicate that oral exams have positively contributed to academic integrity in our courses. Based on our preliminary study and experiences, we expect oral exams can be effectively leveraged to hinder cheating and foster academic honesty in students, even when in-person instruction and assessment resumes.
  5. In the spring of 2020, universities across America, and the world, abruptly transitioned to online learning. The online transition required faculty to find novel ways to administer assessments and in some cases, for students to utilize novel ways of cheating in their classes. The purpose of this paper is to provide a retrospective on cheating during online exams in the spring of 2020. It specifically looks at honor code violations in a sophomore level engineering course that enrolled more than 200 students. In this particular course, four pre-COVID assessments were given in class and six mid-COVID assessments were given online. This paper examines the increasing rate of cheating on these assessments and the profiles of the students who were engaged in cheating. It compares students who were engaged in violations of the honor code by uploading exam questions vs. those who those who looked at solutions to uploaded questions. This paper also looks at the abuse of Chegg during exams and the responsiveness of Chegg’s honor code team. It discusses the effectiveness of Chegg’s user account data in pursuing academic integrity cases. Information is also provided on the question response times for Chegg tutors in answering exam questions and themore »actual efficacy of cheating in this fashion.« less