- Award ID(s):
- 1931348
- NSF-PAR ID:
- 10356918
- Date Published:
- Journal Name:
- IEEE International Conference on eScience
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Computational science today depends on complex, data-intensive applications operating on datasets from a variety of scientific instruments. A major challenge is the integration of data into the scientist's workflow. Recent advances in dynamic, networked cloud resources provide the building blocks to construct reconfigurable, end-to-end infrastructure that can increase scientific productivity. However, applications have not adequately taken advantage of these advanced capabilities. In this work, we have developed a novel network-centric platform that enables high-performance, adaptive data flows and coordinated access to distributed cloud resources and data repositories for atmospheric scientists. We demonstrate the effectiveness of our approach by evaluating time-critical, adaptive weather sensing workflows, which utilize advanced networked infrastructure to ingest live weather data from radars and compute data products used for timely response to weather events. The workflows are orchestrated by the Pegasus workflow management system and were chosen because of their diverse resource requirements. We show that our approach results in timely processing of Nowcast workflows under different infrastructure configurations and network conditions. We also show how workflow task clustering choices affect throughput of an ensemble of Nowcast workflows with improved turnaround times. Additionally, we find that using our network-centric platform powered by advanced layer2 networking techniques results in faster, more reliable data throughput, makes cloud resources easier to provision, and the workflows easier to configure for operational use and automation.more » « less
-
Abstract Pressing environmental research questions demand the integration of increasingly diverse and large‐scale ecological datasets as well as complex analytical methods, which require specialized tools and resources.
Computational training for ecological and evolutionary sciences has become more abundant and accessible over the past decade, but tool development has outpaced the availability of specialized training. Most training for scripted analyses focuses on individual analysis steps in one script rather than creating a scripted pipeline, where modular functions comprise an ecosystem of interdependent steps. Although current computational training creates an excellent starting place, linear styles of scripting can risk becoming labor‐ and time‐intensive and less reproducible by often requiring manual execution. Pipelines, however, can be easily automated or tracked by software to increase efficiency and reduce potential errors. Ecology and evolution would benefit from techniques that reduce these risks by managing analytical pipelines in a modular, readily parallelizable format with clear documentation of dependencies.
Workflow management software (WMS) can aid in the reproducibility, intelligibility and computational efficiency of complex pipelines. To date, WMS adoption in ecology and evolutionary research has been slow. We discuss the benefits and challenges of implementing WMS and illustrate its use through a case study with the
targets r package to further highlight WMS benefits through workflow automation, dependency tracking and improved clarity for reviewers.Although WMS requires familiarity with function‐oriented programming and careful planning for more advanced applications and pipeline sharing, investment in training will enable access to the benefits of WMS and impart transferable computing skills that can facilitate ecological and evolutionary data science at large scales.
-
Scientific breakthroughs in biomolecular methods and improvements in hardware technology have shifted from a single long-running simulation to a large set of shorter simulations running simultaneously, called an ensemble. In an ensemble, each independent simulation is usually coupled with several analyses that apply identical or distinct algorithms on data produced by the corresponding simulation. Today, In situ methods are used to analyze large volumes of data generated by scientific simulations at runtime. This work studies the execution of ensemble-based simulations paired with In situ analyses using in-memory staging methods. Because simulations and analyses forming an ensemble typically run concurrently, deploying an ensemble requires efficient co-location-aware strategies, making sure the data flow between simulations and analyses that form an In situ workflow is efficient. Using an ensemble of molecular dynamics In situ workflows with multiple simulations and analyses, we first show that collecting traditional metrics such as makespan, instructions per cycle, memory usage, or cache miss ratio is not sufficient to characterize the complex behaviors of ensembles. Thus, we propose a method to evaluate the performance of ensembles of workflows that captures resource usage (efficiency), resource allocation, and component placement. Experimental results demonstrate that our proposed method can effectively capture the performance of different component placements in an ensemble. By evaluating different co-location scenarios, our performance indicator demonstrates improvements of up to four orders of magnitude when co-locating simulation and coupled analyses within a single computational host.more » « less
-
Scientific workflows are used routinely in numerous scientific domains, and Workflow Management Systems (WMSs) have been developed to orchestrate and optimize workflow executions on distributed platforms. WMSs are complex software systems that interact with complex software infrastructures. Most WMS research and development activities rely on empirical experiments conducted with full-fledged software stacks on actual hardware platforms. Such experiments, however, are limited to hardware and software infrastructures at hand and can be labor- and/or time-intensive. As a result, relying solely on real-world experiments impedes WMS research and development. An alternative is to conduct experiments in simulation. In this work we present WRENCH, a WMS simulation framework, whose objectives are (i) accurate and scalable simulations; and (ii) easy simulation software development. WRENCH achieves its first objective by building on the SimGrid framework. While SimGrid is recognized for the accuracy and scalability of its simulation models, it only provides low-level simulation abstractions and thus large software development efforts are required when implementing simulators of complex systems. WRENCH thus achieves its second objective by providing high-level and directly re-usable simulation abstractions on top of SimGrid. After describing and giving rationales for WRENCH’s software architecture and APIs, we present a case study in which we apply WRENCH to simulate the Pegasus production WMS. We report on ease of implementation, simulation accuracy, and simulation scalability so as to determine to which extent WRENCH achieves its two above objectives. We also draw both qualitative and quantitative comparisons with a previously proposed workflow simulator.more » « less
-
Scientific workflows are used routinely in numerous scientific domains, and Workflow Management Systems (WMSs) have been developed to orchestrate and optimize workflow executions on distributed platforms. WMSs are complex software systems that interact with complex software infrastructures. Most WMS research and development activities rely on empirical experiments conducted with full-fledged software stacks on actual hardware platforms. Such experiments, however, are limited to hardware and software infrastructures at hand and can be labor- and/or time-intensive. As a result, relying solely on real-world experiments impedes WMS research and development. An alternative is to conduct experiments in simulation. In this work we present WRENCH, a WMS simulation framework, whose objectives are (i)~accurate and scalable simulations; and (ii)~easy simulation software development. WRENCH achieves its first objective by building on the SimGrid framework. While SimGrid is recognized for the accuracy and scalability of its simulation models, it only provides low-level simulation abstractions and thus large software development efforts are required when implementing simulators of complex systems. WRENCH thus achieves its second objective by providing high-level and directly re-usable simulation abstractions on top of SimGrid. After describing and giving rationales for WRENCH's software architecture and APIs, we present a case study in which we apply WRENCH to simulate the Pegasus production WMS. We report on ease of implementation, simulation accuracy, and simulation scalability so as to determine to which extent WRENCH achieves its two above objectives. We also draw both qualitative and quantitative comparisons with a previously proposed workflow simulator.more » « less