Universal Serial Bus (USB) is the de facto protocol supported by peripherals and mobile devices, such as USB thumb drives and smartphones. For many devices, USB Type-C ports are the primary interface for charging, file transfer, audio, video, etc. Accordingly, attackers have exploited different vulnerabilities within USB stacks, compromising host machines via BadUSB attacks or jailbreaking iPhones from USB connections. While there exist fuzzing frameworks dedicated to USB vulnerability discovery, all of them focus on USB host stacks and ignore USB gadget stacks, which enable all the features within modern peripherals and smart devices. In this paper, we propose FUZZUSB, the first fuzzing framework for the USB gadget stack within commodity OS kernels, leveraging static analysis, symbolic execution, and stateful fuzzing. FUZZUSB combines static analysis and symbolic execution to extract internal state machines from USB gadget drivers, and uses them to achieve state-guided fuzzing through multi-channel in- puts. We have implemented FUZZUSB upon the syzkaller kernel fuzzer and applied it to the most recent mainline Linux, Android, and FreeBSD kernels. As a result, we have found 34 previously unknown bugs within the Linux and Android kernels, and opened 7 CVEs. Furthermore, compared to the baseline, FUZZUSB has also demonstrated different improvements, including 3× higher code coverage, 50× improved bug-finding efficiency for Linux USB gadget stacks, 2× higher code coverage for FreeBSD USB gadget stacks, and reproducing known bugs that could not be detected by the baseline fuzzers. We believe FUZZUSB provides developers a powerful tool to thwart USB-related vulnerabilities within modern devices and complete the current USB fuzzing scope.
more »
« less
FUME: Fuzzing Message Queuing Telemetry Transport Brokers
Message Queuing Telemetry Transport (MQTT) is a popular communication protocol used to interconnect devices with considerable network restraints, such as those found in Internet of Things (IoT). MQTT directly impacts a large number of devices, but the software security of its server ("broker") implementations is not well studied. In this paper, we design, implement, and evaluate a novel fuzz testing model for MQTT. The fuzzer combines aspects of mutation guided fuzzing and generation guided fuzzing to rigorously exhaust the MQTT protocol and identify vulnerabilities in servers. We introduce Markov chains for mutation guided fuzzing and generation guided fuzzing that model the fuzzing engine according to a finite Bernoulli process. We implement "response feedback", a novel technique which monitors network and console activity to learn which inputs trigger new responses from the broker. In total, we found 7 major vulnerabilities across 9 different MQTT implementations, including 6 zero-day vulnerabilities and 2 CVEs. We show that when fuzzing these popular MQTT targets, our fuzzer compares favorably with other state-of-the-art fuzzing frameworks, such as BooFuzz and AFLNet.
more »
« less
- Award ID(s):
- 1915780
- PAR ID:
- 10356980
- Date Published:
- Journal Name:
- IEEE INFOCOM 2022 - IEEE Conference on Computer Communications
- Page Range / eLocation ID:
- 1699 to 1708
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Greybox fuzzing and mutation testing are two popular but mostly independent fields of software testing research that have so far had limited overlap. Greybox fuzzing, generally geared towards searching for new bugs, predominantly uses code coverage for selecting inputs to save. Mutation testing is primarily used as a stronger alternative to code coverage in assessing the quality of regression tests; the idea is to evaluate tests for their ability to identify artificially injected faults in the target program. But what if we wanted to use greybox fuzzing to synthesize high-quality regression tests? In this paper, we develop and evaluate Mu2, a Java-based framework for incorporating mutation analysis in the greybox fuzzing loop, with the goal of producing a test-input corpus with a high mutation score. Mu2 makes use of a differential oracle for identifying inputs that exercise interesting program behavior without causing crashes. This paper describes several dynamic optimizations implemented in Mu2 to overcome the high cost of performing mutation analysis with every fuzzer-generated input. These optimizations introduce trade-offs in fuzzing throughput and mutation killing ability, which we evaluate empirically on five real-world Java benchmarks. Overall, variants of Mu2 are able to synthesize test-input corpora with a higher mutation score than state-of-the-art Java fuzzer Zest.more » « less
-
Embedded Network Stacks (ENS) enable lowresource devices to communicate with the outside world, facilitating the development of Internet of Things and Cyber- Physical Systems. Some defects in ENS are thus high-severity cybersecurity vulnerabilities: they are remotely triggerable and can impact the physical world. While prior research has shed light on the characteristics of defects in many classes of software systems, no study has described the properties of ENS defects nor identified a systematic technique to expose them. The most common automated approach to detecting ENS defects is feedback-driven randomized dynamic analysis (“fuzzing”), a costly and unpredictable technique. This paper provides the first systematic characterization of cybersecurity vulnerabilities in ENS. We analyzed 61 vulnerabilities across 6 open-source ENS. Most of these ENS defects are concentrated in the transport and network layers of the network stack, require reaching different states in the network protocol, and can be triggered by only 1-2 modifications to a single packet. We therefore propose a novel systematic testing framework that focuses on the transport and network layers, uses seeds that cover a network protocol’s states, and systematically modifies packet fields. We evaluate this framework on 4 ENS and replicated 12 of the 14 reported IP/TCP/UDP vulnerabilities. On recent versions of these ENSs, it discovered 7 novel defects (6 assigned CVES) during a bounded systematic test that covered all protocol states and made up to 3 modifications per packet. We found defects in 3 of the 4 ENS we tested that had not been found by prior fuzzing research. Our results suggest that fuzzing should be deferred until after systematic testing is employed.more » « less
-
USB Power Delivery (USBPD) is a state-of-the-art charging protocol for advanced power supply. Thanks to its high volume of power supply, it has been widely adopted by consumer devices, such as smartphones and laptops, and has become the de facto USB charging standard in both EU and North America. Due to the low-level nature of charging and the complexity of the protocol, USBPD is often implemented as proprietary firmware running on a dedicated microcontroller unit (MCU) with a USBPD physical layer. Bugs within these implementations can not only lead to safety issues, e.g., over-charging, but also cause security issues, such as allowing attackers to reflash USBPD firmware. This paper proposes FUZZPD, the first black-box fuzzing technique with dual-role state guidance targeting off-the-shelf USBPD devices with closed-source USBPD firmware. FUZZPD only requires a physical USB Type-C connection to operate in a plug-n-fuzz fashion. To facilitate the black-box fuzzing of USBPD firmware, FUZZPD manually creates a dual-role state machine from the USBPD specification, which enables both state coverage and transitions from fuzzing inputs. FUZZPD further provides a multi-level mutation strategy, allowing for fine-grained state-aware fuzzing with intra- and inter-state mutations. We implement FUZZPD using a Chromebook as the fuzzing host and evaluate it against 12 USBPD mobile devices from 7 different vendors, 7 USB hubs from 7 different vendors, and 5 chargers from 5 different vendors. FUZZPD has found 15 unique bugs, 9 of which have been confirmed by the corresponding vendors. We additionally conduct a comparison between FUZZPD and multiple state-of-the-art black-box fuzzing techniques, demonstrating that FUZZPD achieves code coverage that is 40% to 3x higher than other solutions. We then compare FUZZPD with the USBPD compliance test suite from USBIF and show that FUZZPD can find 7 more bugs with 2x higher code coverage. FUZZPD is the first step towards secure and trustworthy USB charging.more » « less
-
Grammar-based fuzzing is a technique used to find soft- ware vulnerabilities by injecting well-formed inputs generated following rules that encode application semantics. Most grammar-based fuzzers for network protocols rely on human experts to manually specify these rules. In this work we study automated learning of protocol rules from textual specifications (i.e. RFCs). We evaluate the automatically extracted protocol rules by applying them to a state-of-the-art fuzzer for transport protocols and show that it leads to a smaller number of test cases while finding the same attacks as the system that uses manually specified rules.more » « less