skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 29 until 11:59 PM ET on Saturday, September 30 due to maintenance. We apologize for the inconvenience.

Search for: All records

Award ID contains: 1915780

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Message Queuing Telemetry Transport (MQTT) is a popular communication protocol used to interconnect devices with considerable network restraints, such as those found in Internet of Things (IoT). MQTT directly impacts a large number of devices, but the software security of its server ("broker") implementations is not well studied. In this paper, we design, implement, and evaluate a novel fuzz testing model for MQTT. The fuzzer combines aspects of mutation guided fuzzing and generation guided fuzzing to rigorously exhaust the MQTT protocol and identify vulnerabilities in servers. We introduce Markov chains for mutation guided fuzzing and generation guided fuzzing that model the fuzzing engine according to a finite Bernoulli process. We implement "response feedback", a novel technique which monitors network and console activity to learn which inputs trigger new responses from the broker. In total, we found 7 major vulnerabilities across 9 different MQTT implementations, including 6 zero-day vulnerabilities and 2 CVEs. We show that when fuzzing these popular MQTT targets, our fuzzer compares favorably with other state-of-the-art fuzzing frameworks, such as BooFuzz and AFLNet. 
    more » « less
  2. Recent research has shown that in-network observers of WiFi communication (i.e., observers who have joined the WiFi network) can obtain much information regarding the types, user identities, and activities of Internet-of-Things (IoT) devices in the network. What has not been explored is the question of how much information can be inferred by an out-of-network observer who does not have access to the WiFi network. This attack scenario is more realistic and much harder to defend against, thus imposes a real threat to user privacy. In this paper, we investigate privacy leakage derived from an out-of-network traffic eavesdropper on the encrypted WiFi traffic of popular IoT devices. We instrumented a testbed of 12 popular IoT devices and evaluated multiple machine learning methods for fingerprinting and inferring what IoT devices exist in a WiFi network. By only exploiting the WiFi frame header information, we have achieved 95% accuracy in identifying the devices and often their working status. This study demonstrates that information leakage and privacy attack is a real threat for WiFi networks and IoT applications. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)
    A significant challenge in blockchain and cryptocurrencies is protecting private keys from potential hackers because nobody can rollback a transaction made with a stolen key once the blockchain network confirms the transaction. The technical solution to protect private keys is cryptocurrency wallets, a piece of software, hardware, or a combination of them to manage the keys. In this paper, we propose a multilayered architecture for cryptocurrency wallets based on a Defense-in-Depth strategy to protect private keys with a balance between convenience and security. The user protects the private keys in three restricted layers with different protection mechanisms. So, a single breach cannot threaten the entire fund, and it saves time for the user to respond. We implement a proof-of-concept of our proposed architecture on both a smart card hardware wallet and an Android smartphone wallet with no performance penalty. Furthermore, we analyze the security of our proposed architecture with two adversary models. 
    more » « less
  6. null (Ed.)
    Bitcoin and other altcoin cryptocurrencies use the Elliptic-Curve cryptography to control the ownership of coins. A user has one or more private keys to sign a transaction and send coins to others. The user locks her private keys with a password and stores them on a piece of software or a hardware wallet to protect them. A challenge in cryptocurrencies is losing access to private keys by its user, resulting in inaccessible coins. These coins are assigned to addresses which access to their private keys is impossible. Today, about 20 percent of all possible bitcoins are inaccessible and lost forever. A promising solution is the off-chain recovery transaction that aggregates all available coins to send them to an address when the private key is not accessible. Unfortunately, this recovery transaction must be regenerated after all sends and receives, and it is time-consuming to generate on hardware wallets. In this paper, we propose a new mechanism called lean recovery transaction to tackle this problem. We make a change in wallet key management to generate the recovery transaction as less frequently as possible. In our design, the wallet generates a lean recovery transaction only when needed and provides better performance, especially for micropayment. We evaluate the regular recovery transaction on two real hardware wallets and implement our proposed mechanism on a hardware wallet. We achieve a %40 percentage of less processing time for generating payment transactions with few numbers of inputs. The performance difference becomes even more significant, with a larger number of inputs. 
    more » « less
  7. null (Ed.)
    In this paper, we explore the use of microcontrollers (MCUs) and crypto coprocessors to secure IoT applications, and show how developers may implement a low-cost platform that provides protects private keys against software attacks. We first demonstrate the plausibility of format string attacks on the ESP32, a popular MCU from Espressif that uses the Harvard architecture. The format string attacks can be used to remotely steal private keys hard-coded in the firmware. We then present a framework termed SIC 2 (Securing IoT with Crypto Coprocessors), for secure key provisioning that protects end users' private keys from both software attacks and untrustworthy manufacturers. As a proof of concept, we pair the ESP32 with the low-cost ATECC608A cryptographic coprocessor by Microchip and connect to Amazon Web Services (AWS) and Amazon Elastic Container Service (EC2) using a hardware-protected private key, which provides the security features of TLS communication including authentication, encryption and integrity. We have developed a prototype and performed extensive experiments to show that the ATECC608A crypto chip may significantly reduce the TLS handshake time by as much as 82% with the remote server, and it may lower the total energy consumption of the system by up to 70%. Our results indicate that securing IoT with crypto coprocessors is a practicable solution for low-cost MCU based IoT devices. 
    more » « less