skip to main content


Title: Adjusting SiO2 : C mole ratios in rice hull ash (RHA) to control carbothermal reduction to nanostructured SiC, Si3N4 or Si2N2O composites
We report here extracting SiO2 as spirosiloxane [(CH3)2C(O)CH2CH(O)CH3]2Si from rice hull ash (RHA) to carefully control the SiO2 : C mole ratios, allowing direct carbothermal reduction to SiC, Si3N4, or Si2N2O without the need to add extra carbon and as a mechanism to preserve the original nanocomposite structure. We can adjust SiO2 : C ratios from 2 : 15 to 13 : 35 simply by reacting RHA with hexylene glycol (HG) with catalytic base to distillatively extract SiO2 to produce silica depleted RHA (SDRHA) with SiO2 contents of 40–65 wt% and corresponding carbon contents of 60–35 wt% with specific surface areas (SSAs) of >400 m2 g−1. On heating SDRHA40–65 at 1400–1500 °C in an Ar, N2, or N2–H2 atmosphere, XRD patterns reveal formation of SiC, Si3N4, or Si2N2O as the major phase with some residual hard carbon. SEM studies reveal mixtures of particles and whiskers in the products, which show BET specific surface areas >40 m2 g−1 after oxidative removal of excess carbon. Dilute acid and boiling water prewashing of RHA with milling eliminates typical product impurities compared to those found using conventional carbothermal reduction of agricultural wastes, which qualifies the resulting composites as components for electrochemical energy storage devices among other applications, to be reported elsewhere.  more » « less
Award ID(s):
1926199
NSF-PAR ID:
10357006
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Green chemistry
Volume:
23
ISSN:
1463-9262
Page Range / eLocation ID:
7751-7762
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Rice hull ash (RHA, an agricultural waste) produced during combustion of rice hulls to generate electricity consists (following dilute acid leaching) of high surface area SiO2 (80–90 wt%) and 10–20 wt% carbon (80 m2 g−1 total). RHA SiO2 is easily extracted by distillation (spirosiloxane) producing SDRHA, which offers an opportunity to develop “green” hybrid lithium-ion capacitors (LICs) electrodes. SDRHA consists of 50–65 wt% SiO2 with the remainder carbon with a specific surface area of ≈220 m2 g−1. SDRHA microstructure presents a highly irregular and disordered nanocomposite composed of nanosilica closely connected via graphene layers enhancing Li-ion mobility during charge/discharge process. SDRHA electrochemicalproperties were assessed by assembling Li/SDRHA half-cells and LiNi0.6Co0.2Mn0.2O2 (NMC622)-SDRHA full-cells. The half-cell delivered a high specific capacity of 250 mA h g−1 at 0.5C and retained a capacity of 200 mA h g−1 at 2C for 400 h. In contrast to the poor cycle performance of NMC based batteries at high C-rates, the hybrid full-cell demonstrated a high specific capacitance of 200 F g−1 at 4C. In addition, both the half and full hybrid cells demonstrate excellent coulombic efficiencies (∼100%). These results suggest that low cost and environmentally friendly SDRHA, may serve as a potentialalternative electrode material for LICs. 
    more » « less
  2. Biomass-derived materials offer low carbon approaches to energy storage. High surface area SiC w/wo 13 wt% hard carbon (SiC/HC, SiC/O), derived from carbothermal reduction of silica depleted rice hull ash (SDRHA), can function as Li+ battery anodes. Galvanostatic cycling of SiC/HC and SiC/O shows capacity increases eventually to >950 mA h g−1 (Li1.2–1.4SiC) and >740 mA h g−1 (Li1.1SiC), respectively, after 600 cycles. Post-mortem investigation via XRD and 29Si MAS NMR reveals partial phase transformation from 3C- to 6H-SiC, with no significant changes in unit cell size. SEMs show cycled electrodes maintain their integrity, implying almost no volume expansion on lithiation/delithiation, contrasting with >300% volume changes in Si anodes on lithiation. Significant void space is needed to compensate for these volume changes with Si in contrast to SiC anodes suggesting nearly competitive capacities. 6Li MAS NMR and XPS show no evidence of LixSi, with Li preferring all-C environments supported by computational modeling. Modeling also supports deviation from the 3C phase at high Li contents with minimal volume changes. 
    more » « less
  3. Realizing more holistic electrification in society to disengage current dependence on nonrenewable fuels requires balancing between energy storage mechanisms and actual environmental benefits gained from the transition from traditional resources. Given that the majority of greenhouse gas emissions in battery value chains originate from material mining and production, silicon carbide (SiC) derived from the agricultural waste, rice hull ash (RHA), is introduced as an environmentally-benign alternate anode material. SiC with hard carbon (SiC/HC) exhibits capacity increases on long-term cycling, reaching capacities of >950 mAh g−1competitive with elemental Si with complementary porosity. Herein, a relatively low amount (<30 wt%) of graphite added to SiC/HC composites greatly promotes capacity increases while retaining sustainability. Comparison between graphite contents were optimal at ≈30 wt% graphite (SiC/HC/30G) boosted performance, doubling capacity increase rates and subsequently saving >70% time to reach target specific capacities at C/10. At 2C, SiC/HC/30G offers enhanced specific capacities at ≈220 mAh g−1. The positive effects from the coincidentally formed HC are demonstrated by oxidizing HC to form SiC/O, followed by graphite addition. Experimental post-mortem analyses support that SiC/graphite composites provide a promising solution for implementing agricultural waste-derived material for next-generation lithium storage.

     
    more » « less
  4. Porous silicon oxycarbide (SiOC) is emerging as a much superior ultrahigh surface area material that can be stable up to high temperatures with great tailorability through composition and additive modifications. In this study, bulk SiOCs were fabricated from a base polysiloxane (PSO) system by using different organic additives and pyrolysis atmospheres followed by hydrofluoric acid (HF) etching. The additives modify the microstructural evolution by influencing the SiO2 nanodomain formation. The SiOC ceramics contain significantly less SiC and more SiO2 with Ar+H2O atmosphere pyrolysis compared to Ar atmosphere pyrolysis. Water vapor injection during pyrolysis also causes a drastic increase in specific surface areas. The addition of 10 wt% tetraethyl orthosilicate (TEOS) with Ar+H2O pyrolysis produces a specific surface area of 1953.94 m2/g, compared to 880.09 m2/g for the base PSO pyrolyzed in Ar. The fundamental processes for the composition and phase evolutions are discussed as a novel pathway to creating ultrahigh surface area materials. The ability to drastically increase the specific surface area through the use of pyrolysis atmosphere and organic additives presents a promising processing route for highly porous SiOC ceramics. 
    more » « less
  5. A set of LixSiON (x = 2, 4, 6) polymer precursors to a novel solid-state electrolyte system were synthesized starting from rice hull ash (RHA), an agricultural waste, providing a green route towards the assembly of all solid-state batteries (ASSBs). Silica, ∼90 wt% in RHA, can be catalytically (alkali base) dissolved (20–40 wt%) in hexylene glycol (HG) and distilled directly from the reaction mixture as the spirosiloxane [(C6H14O2)2Si, SP] at 200 °C. SP can be lithiated using controlled amounts of LiNH2 to produce LixSiON oligomers/polymers with MWs up to ∼1.5 kDa as characterized by FTIR, MALDI-ToF, multinuclear NMR, TGA-DTA, XRD, XPS, SEM and EDX. XPS analyses show that Li contents depend solely on added LiNH2 but found N contents are only ≤1 at%. NH2 likely is removed as NH3 during sample preparation (vacuum/ overnight). In contrast, MALDI indicates N contents of ∼5–30 at% N with shorter drying times (vacuum/ minutes). 7Li NMR positive chemical shifts suggest that precursor bound Li+ ions dissociate easily, ben- eficial for electrochemical applications. The 7Li shifts correlate to Li contents as well as Li+ conductivities. 1H, 13C and 29Si NMRs of the Li6SiON precursor show fluxional behavior implying high Li+ mobility. Dense microstructures are observed for Li4SiON and Li6SiON pellets heated to 200 °C/2 h/N2. Impedance studies suggest that ionic conductivities increase with Li content; the Li6SiON precursor offers the highest ambient conductivity of 8.5 × 10−6 S cm−1 after heating to 200 °C/2 h/N2. 
    more » « less